328 research outputs found

    A study on vaccination models for a seasonal epidemic process

    Full text link
    In this paper seasonal epidemiological processes are considered and a strategy of periodic vaccination is proposed. The invariant formulations associated with an N-periodic system and the reproduction numbers associated with them are considered. A collection of measures to study the stability of the system is introduced. Moreover, the collection of s-basic reproduction number at time j help us to establish conditions on the periodic vaccination rates in the vaccination program. Finally, an SIR model is showed and a comparison between the results obtained using constant or periodic vaccination program is analyzed. (C) 2014 Elsevier Inc. All rights reserved.The authors wish to express their thanks to the reviewers for helpful comments and suggestions. This paper is supported by Grant MTM2010-18228.Cantó Colomina, B.; Coll, C.; Sánchez, E. (2014). A study on vaccination models for a seasonal epidemic process. Applied Mathematics and Computation. 243:152-160. https://doi.org/10.1016/j.amc.2014.05.104S15216024

    Fighting Enemies and Noise: Competition of Residents and Invaders in a Stochastically Fluctuating Environment

    Get PDF
    The possible control of competitive invasion by infection of the invader and multiplicative noise is studied. The basic model is the Lotka-Volterra competition system with emergent carrying capacities. Several stationary solutions of the non-infected and infected system are identified as well as parameter ranges of bistability. The latter are used for the numerical study of invasion phenomena. The diffusivities, the infection but in particular the white and coloured multiplicative noise are the control parameters. It is shown that not only competition, possible infection and mobilities are important drivers of the invasive dynamics but also the noise and especially its color and the functional response of populations to the emergence of noise

    Community-Based Measures for Mitigating the 2009 H1N1 Pandemic in China

    Get PDF
    Since the emergence of influenza A/H1N1 pandemic virus in March–April 2009, very stringent interventions including Fengxiao were implemented to prevent importation of infected cases and decelerate the disease spread in mainland China. The extent to which these measures have been effective remains elusive. We sought to investigate the effectiveness of Fengxiao that may inform policy decisions on improving community-based interventions for management of on-going outbreaks in China, in particular during the Spring Festival in mid-February 2010 when nationwide traveling will be substantially increased. We obtained data on initial laboratory-confirmed cases of H1N1 in the province of Shaanxi and used Markov-chain Monte-Carlo (MCMC) simulations to estimate the reproduction number. Given the estimates for the exposed and infectious periods of the novel H1N1 virus, we estimated a mean reproduction number of 1.68 (95% CI 1.45–1.92) and other A/H1N1 epidemiological parameters. Our results based on a spatially stratified population dynamical model show that the early implementation of Fengxiao can delay the epidemic peak significantly and prevent the disease spread to the general population but may also, if not implemented appropriately, cause more severe outbreak within universities/colleges, while late implementation of Fengxiao can achieve nothing more than no implementation. Strengthening local control strategies (quarantine and hygiene precaution) is much more effective in mitigating outbreaks and inhibiting the successive waves than implementing Fengxiao. Either strong mobility or high transport-related transmission rate during the Spring Festival holiday will not reverse the ongoing outbreak, but both will result in a large new wave. The findings suggest that Fengxiao and travel precautions should not be relaxed unless strict measures of quarantine, isolation, and hygiene precaution practices are put in place. Integration and prompt implementation of these interventions can significantly reduce the overall attack rate of pandemic outbreaks

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider

    Modelling and analysis of influenza A (H1N1) on networks

    Get PDF
    Network modelling is a useful tool for studying the transmission of H1N1 in China, capturing the main features of the spread of H1N1. The paper calculates the basic reproduction number and studies the effects of various immunization schemes. The final size relation is derived for the network epidemic model. While a uniform, mass-immunization strategy helps control the prevalence, a targeted immunization strategy focusing on specific groups with given connectivity may better control an epidemic
    corecore