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Abstract. The possible control of competitive invasion by infection of the invader and multiplica-
tive noise is studied. The basic model is the Lotka-Volterra competition system with emergent
carrying capacities. Several stationary solutions of the non-infected and infected system are iden-
tified as well as parameter ranges of bistability. The latter are used for the numerical study of
invasion phenomena. The diffusivities, the infection but in particular the white and coloured multi-
plicative noise are the control parameters. It is shown that not only competition, possible infection
and mobilities are important drivers of the invasive dynamics but also the noise and especially its
color and the functional response of populations to the emergence of noise.
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1. Introduction
The main aim of modeling biological population dynamics is to improve the understanding of the
functioning of food chains and webs as well as their dependence on internal and external condi-
tions. Hence, mathematical models of biological population dynamics have not only to account for
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growth and interactions but also for spatiotemporal processes like random or directed and joint or
relative motion of species, as well as the heterogeneity of the environment. Early attempts began
with statistics, exponential growth, physicochemical (neutral) diffusion, and Lotka-Volterra type
interactions. These approaches have been continuously refined to more realistic descriptions of the
development of natural populations.

Ecological and epidemiological models are known since more than 200 years. First attempts
to merge these models appeared only about 30 years ago, cf. [1, 8, 10, 14] as well as [62, 63].
Infectious diseases are prominent examples of biological invasions and continue to (re-)emerge in
modern times. The negative econo-ecological effects of bioinvasions [7, 45] have led to a remark-
able hype of bioinvasion research incl. modeling, cf. [18, 41, 48, 50, 66].

The history of research on stochastic processes and integration is long as well, historical sur-
veys have been published, cf. [22, 38]. The seminal work by Îto [21] and Stratonovich [57] should
be particularly recognised. Modeling environmental variability with multiplicative white noise
goes back to the 1970s. Not only did May [34, 35] introduce the model that is used until today as a
perturbation of the growth rate of a population by “white noise” but only a few years later, a more
mechanistic basis of this model was developed. Branching processes provide a stochastic model
that describes the number of offspring for a given number of individuals Zi within one generation i.
The population number Zi+1 in generation i + 1 is updated for a given population Zi according
to previously chosen probability distributions. This model was extended by Smith and Wilkinson
[54, 55] by a stochastic process ζi which modulates for each new generation the offspring that
is generated. Branching processes in random environments (BPRE) provide an individual-based
model for population growth. For large population numbers, a BPRE can be approximated by a
stochastic differential equation (SDE) that accounts both for demographic as well as environmen-
tal stochasticity. Keiding [24] conjectured the form of the resulting diffusion approximation, his
conjecture was rigorously proven by Kurtz [27]. The model introduced by May is obtained from
Kurtz’ diffusion approximation by neglecting the term due to demographic stochasticity. Thus,
the SDE model for environmental stochasticity is derived from the influence of a random environ-
ment on the population dynamics of a branching process but neglects its demographic stochasticity.
Conceptually, it is straightforward to account for spatial heterogeneities by extending a system of
SDEs by diffusion terms that represent the spatial spread of the individual species. In the resulting
system of reaction-diffusion equations, the stochastic processes ζi are replaced by time-dependent
random fields.

Perturbation with multiplicative white noise is the most commonly used model for stochastic
environmental fluctuations. The focus of this study is to generalise this model by relaxing the
assumptions that noise is multiplicative and uncorrelated. On the one hand, a multiplicative noise
term implies that the effect of environmental fluctuations on the individuals of a population is ad-
ditive. Whereas this seems reasonable for small population densities we propose that for large
population numbers the effect of individual responses to environmental fluctuations on the popu-
lation should decrease. Thus, we suggest that the population-dependent response to environmental
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noise saturates for large population numbers similar to the functional response of predators at large
prey densities and therefore we model the population-dependent response to environmental noise
in a completely analogous way.

On the other hand, the assumption of uncorrelated white noise is usually justified by the coarse-
ness of temporal or spatial scale, respectively. If spatial or temporal correlation length are much
shorter than the time or length scale of interest, it seems valid to consider the time-dependent
random field as uncorrelated. However, particular care must be taken when considering spatiotem-
poral dynamics driven by noise. Stochastic differential equations driven by uncorrelated noise
can usually be solved over a function space such as L2 and this remains true if the system is
extended to a reaction-diffusion equation over one-dimensional space (d = 1). But for spatial di-
mensions d ≥ 2 solutions for stochastic reaction-diffusion equations driven by uncorrelated noise
can only be guaranteed in a space of generalised functions, see e.g. [42, 65]. The reason for this
phenomenon is that the Laplacian cannot smooth uncorrelated noise sufficiently for spatial dimen-
sions exceeding 1 so that a solution may contain peaks resembling the δ distribution. Not only is
the physical significance of these solutions debatable but also numerical approximations are not
capable of capturing this aspect of the continuous system. Here we take a pragmatic point of view
on this difficult problem and present numerical solutions for temporally and spatially white noise
where the space may be interpreted as a discrete lattice whose nodes interact by a discrete Lapla-
cian.

Apart from the mathematical problems arising with white noise terms, the correlation structure
of ecological data, in particular time series data, has been extensively studied. The most com-
monly used class of models consists of power-law noises, the so-called 1/fβ noises. Here, 1/fβ

describes the density of the Fourier-transformed signal over the frequency f . By analogy with
spectra of visible light, some values of the exponent β are associated with colours. For example,
pink noise and red noise refer to β = 1 and β = 2, respectively, whereas the flat spectrum (β = 0)
is characteristic of white noise. More generally, β is also referred to as the “reddening” of a signal.
In his pioneering analysis of environmental noise, Steele combined theoretical models and empir-
ical data and proposed that whereas time series data from terrestrial ecosystem are approximately
uncorrelated or white, spectra from marine data are reddened [56]. Twenty years later, Vasseur
and Yodzis generally confirmed the work of Steele based on an analysis of various sources of data
[61]. At the same time, Halley developed a theoretical argument why 1/fβ-noises with β > 0 and,
in particular, (pink) 1/f -noise, are preferable to uncorrelated white noise as a model for stochastic
environmental fluctuations [15, 16]. The influence of temporally coloured noise has been inten-
sively investigated, primarily in the most simple population dynamics models, cf. the review by
Ruokolainen et al. [47], whereas Siekmann and Malchow probably published the only study that
considered spatially coloured (but temporally white) noise [52, 53]. Although the 1/fβ family of
noise models has clearly been the most popular model for stochastic environmental fluctuations, it
is difficult to rule out alternative stochastic processes. In fact, even Halley—who generally propa-
gates the 1/f model—argues that it is advisable to consider different alternative noise models. For
this reason we investigate the spatio-temporal noise model due to Garcı́a-Ojalvo et al. [12, 13], a
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spatio-temporal generalisation of the Ornstein-Uhlenbeck process. In contrast to 1/fβ noises the
density of this noise decays exponentially in Fourier space. A further interesting alternative to the
models mentioned so far are bounded noise models, an emerging field of research, discussed, for
example, in a recent monograph edited by d’Onofrio [6].

In this study we compare the effects of nonlinear response to noise as well as spatiotemporal
correlations to generic multiplicative white noise for the example of a spatial eco-epidemiological
model. The model represents the biocontrol of an invasive species through targeted infection
[29, 30]. In Section 2. we present the eco-epidemiological model with some stability results (Sec-
tion 2.1.) and the general form of stochastic spatiotemporal models with nonlinear correlated noise
terms considered in this study (Section 2.2.). Because the numerical solution of stochastic par-
tial differential equations can be challenging, we briefly describe the numerical methods we use
for integrating the model considered here including a discussion of the generation of spatiotem-
porally coloured noise. In Section 4. we demonstrate that for a given parameterisation of our
eco-epidemiological invasion model, different parameters of the noise model may lead to qualita-
tively very different behaviour. Different properties of the stochastic perturbations may not only
lead to opposite predictions of survival and extinction but also considerably affect the pattern of
the spatiotemporal dynamics. We briefly discuss some implications of our study in Section 5..

2. Resident-invader competition with infection in the invader
population

For the invasion of a resident population by a competing invader, the Lotka-Volterra competition
model is used, i.e.,

dN1

dt
= r1N1 − c11N

2
1 − c12N1N2, (2.1)

dN2

dt
= r2N2 − c22N

2
2 − c21N1N2, (2.2)

where N1 and N2 are resident and invader respectively. Carrying capacities will not explicitly
be introduced because they can suppress a higher variety of solutions and rather appear as special
cases [9, 26, 32, 51]. The r’s stand for the growth rates and the c’s for the inter- and intraspecific
competition.

A specific infection of the invading population can be used as biocontrol measure to stop and
reverse the invasion, cf. [5, 17, 23, 37]. To model this, the invader population is split into suscep-
tibles S and infecteds I ,

N2 = S + I.

Then, the local dynamics reads with notation X = {X1 ≡ N1, X2 = S,X3 = I}
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dX1

dt
= f1 (X) = r1X1 − c11X

2
1 − c12X1(X2 +X3), (2.3)

dX2

dt
= f2 (X) = r2X2 − c22X2(X2 +X3)− c21X1X2 − λ

X2X3

(X2 +X3)q
, (2.4)

dX3

dt
= f3 (X) = r2X3 − c22X3(X2 +X3)− c21X1X3 + λ

X2X3

(X2 +X3)q
− µX3 , (2.5)

where λ is the transmission coefficient of the disease and µ the disease-induced higher mortality
rate of the infecteds. The exponent q allows to describe mass-action type (q = 0) and frequency-
dependent transmission (q = 1) of the disease respectively [1, 36].

However, one cannot expect that growth rates and competition intensities of susceptibles and
infecteds are the same. They should rather be split and could be ordered like

r2 ⇒ {r2, r3} & r3 ≤ r2 ,
c12 ⇒ {c12, c13} & c13 ≤ c12 ,
c21 ⇒ {c21, c31} & c21 ≤ c31 ,
c22 ⇒ {c22, c23, c32, c33} & c23 ≤ c33 ≤ c22 ≤ c32 .

(2.6)

The ordering of the intra- and interspecific competition coefficients of susceptibles and infect-
eds depends on the biological species, cf. [2]. However, it can be certainly accepted [51] that

c23 ≤ c22 ∧ c33 ≤ c32 .

System (2.3–2.5) then changes to

dX1

dt
= f1(X) = (r1 − c11X1)X1 − (c12X2 + c13X3)X1 , (2.7)

dX2

dt
= f2(X) = (r2 − c22X2)X2 − (c21X1 + c23X3)X2 − λ

X2X3

(X2 +X3)q
, (2.8)

dX3

dt
= f3(X) = (r3 − µ− c33X3)X3 − (c31X1 + c32X2)X3 + λ

X2X3

(X2 +X3)q
. (2.9)

For convenience, the model of the local dynamics is not analysed in terms of X1, X2 and X3

but rather in X1, i and N2 = X2 + X3 where i is the prevalence, i.e., the infected fraction of the
total invader population N2 [19],

i =
X2

X2 +X3

=
X2

N2

.

Having in mind that
di

dt
=

1

N2

(
dX2

dt
− idN2

dt

)
, (2.10)
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it follows

dX1

dt
= r1X1 − c11X

2
1 − [c12(1− i) + c13i]X1N2 , (2.11)

di

dt
=
{
r3 − r2 + λN1−q

2 − µ+N2 [(c22 − c32)(1− i) + (c23 − c33)i] +X1 [c21 − c31]
}
∗

∗ i(1− i) , (2.12)
dN2

dt
= {G(N2, i)− [c21(1− i) + c31i]X1}N2 , (2.13)

with

G(N2, i) = r2(1− i) + (r3 − µ)i−N2

[
c22(1− i)2 + (c23 + c32)i(1− i) + c33i

2
]
. (2.14)

The latter expression is also found for predator-prey systems with infected prey [51]. Note that
if the resident X1 resp. the predator in [51] cannot distinguish between susceptible and infected
invader resp. prey, the temporal change of the prevalence becomes independent of the type of
interspecific ecological interactions such as competition and predation. It only contains terms
describing the intraspecific competition of susceptibles and infecteds in the infected population.

2.1. Stationary solutions and stability for frequency-dependent (standard)
incidence q=1

In phytopathology, the transmission of especially fungal diseases is described with standard inci-
dence [60]. A corresponding model of the invasion of a fungal disease over a vineyard has been
investigated in [4]. Further on, only the standard incidence is considered, i.e., q = 1.

The infection-free system, i.e., i ≡ 0, N2 = X2, is the Lotka-Volterra competition model with
its known stationary solutions and their stability ranges. Especially interesting for the consideration
of spatial invasions is the bistable parameter range

r1c22 − r2c12 > 0 ∧ r2c11 − r1c21 > 0 ,

when both the invader-free (
r1

c11

, 0, 0) and the resident-free (0, 0,
r2

c22

) states are stable and can

compete for space. The opposite case may also happen: The invader arrives already infected, i.e.,

i ≡ 1, N2 = X3, and the invader-free (
r1

c11

, 0, 0) and the resident-free (0, 0,
r3 − µ
c33

) states can be

both at once stable for

r1c33 − (r3 − µ) c13 > 0 ∧ (r3 − µ) c11 − r1c31 > 0 .

However, the latter as well as the possible bistability of resident-only (
r1

c11

, 0, 0) and (susceptible-

infected)-invader-only (0, iS1, NS1
2 ) states will not be considered here.
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2.2. Spatiotemporal dynamics in a variable environment
The main focus of this study is to consider the spatiotemporal effects of a more detailed model
of environmental variability. We assume that all species spread randomly so that mobility can be
described as diffusion with coefficients D = {Dii = Di ; Dij ≡ 0 ∀i 6= j ; i, j = 1, 2, 3}. Also we
add Gaussian random fields ξ(~r, t) = {ξi(~r, t) ; i = 1, 2, 3} to system (2.7–2.9) so that we obtain
the system of stochastic partial differential equations

∂X(~r, t)

∂t
−D∆X(~r, t) = f [X(~r, t)] + g [X(~r, t)] ξ(~r, t) , (2.15)

where the matrix function g(X) = {gij(X); i, j = 1, 2, 3} determines the density-dependent
noise intensity. We consider horizontal processes with position vector ~r = {x, y} and corre-
sponding Laplace operator ∆ = ∂2/∂x2 + ∂2/∂y2. In literature, often temporally and spatially
uncorrelated “white” Gaussian fields with zero mean and delta correlation have been considered

〈ξi(~r, t)〉 = 0 , 〈ξi(~r1, t1) ξi(~r2, t2)〉 = δ(~r1 − ~r2) δ(t1 − t2) , i = 1, 2, 3 . (2.16)

Here, we investigate the effect of extending this model by correlated “coloured” noise with
correlation lengths τ and λ in the temporal and spatial domain, respectively. Apart from using
coloured noise we also investigate a generalisation of the density-dependent noise g (X). Purely
diagonal, linear multiplicative noise

gii(X) = ωiiXi ; gij(X) = 0 ∀ i 6= j ; i, j = 1, 2, 3 ; (2.17)

can be interpreted as a model where individuals respond independently to stochastic environ-
mental variability. Thus, the effect of environmental fluctuations on each individual directly trans-
lates into variability at the population level – the response at the population level is additive. The
alternative model suggested here is based on the assumption that in large populations individu-
als do not respond to fluctuations independently from each other. Instead we propose that larger
populations respond to environmental variability in a more robust way, i.e., neither favourable nor
adverse effects influence the population proportional to the number of individuals:

gij(X) =
ωijX

m
j

γij +
3∑

k=1

aikXn
k

; i, j = 1, 2, 3 ; 1 ≤ m ≤ n ≤ 2 . (2.18)

For m = n, the parameter ωij/aij is the maximum noise intensity that is reached asymp-
totically for large populations Xj . The parameter γij is the population level at which the noise
intensity reaches half of the maximum level ωij/aij . Thus, this parameter describes the ability of
a population to collectively reduce the effect of noise – the higher γij , the higher the population
level must be until population Xj is appreciably affected by environmental variability.

For m < n, the noise intensity even decreases and eventually vanishes for high population
densities. However, these values are never reached.
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In previous papers [29, 30], it was shown that a certain variability of the environment and the
mobilities of the competitors are the system-driving forces. Extreme events such as landslides lead
to bare ground re-invadable by both resident and alien species. These events at random times, size
and locations are not considered here. They are replaced by white and coloured noises [46, 52, 53].
Again, the biocontrol of the invasion through a specific infection of the non-indigenous species is
studied.

3. Numerical methods
The numerical solution of stochastic partial differential equations is a difficult problem and the
subject of current research. For this reason we explain how the spatiotemporal model (2.15) can be
solved numerically and how spatiotemporally correlated noise can be generated. We follow a finite
difference approach where in a first step the spatial domain is discretised. In this way the system
of stochastic partial differential equations is approximated by uncoupled stochastic differential
equations that are solved numerically in a second step.

3.1. Peaceman-Rachford method
For the first step, we use the semi-implicit Peaceman-Rachford method [44, 58] which, in particular
for stochastic equations, often seems to be more robust than the simplest explicit scheme. The two-
dimensional space (x, y) is discretised as (jδx, kδy) with spatial step sizes (δx, δy) respectively.
Time t is split into nδtwith time steps δt. Then, the spatiotemporally explicit scheme with centered
difference approximation of the second spatial derivative of X is at time step (n + 1) and inner
position (j, k)

Xn+1
j k −Xn

j k

δt
=
Xn
j−1 k − 2Xn

j k +Xn
j+1 k

δx2
+
Xn
j k−1 − 2Xn

j k +Xn
j k+1

δy2
. (3.1)

Spatial grid points at the system’s border have to account for the boundary conditions. As men-
tioned before, this explicit scheme is not robust enough for highly variable values of X . Spatially
semi-implicit schemes with time splitting and alternating directions are the better choice. One of
them is the Peaceman-Rachford method which holds for two-dimensional space. The first half
time step, the derivative with respect to x is computed implicitly and explicitly with respect to y,
and at the second half time step vice versa:

X
n+1/2
j k −Xn

j k

δt/2
=
X
n+1/2
j−1 k − 2X

n+1/2
j k +X

n+1/2
j+1 k

δx2
+
Xn
j k−1 − 2Xn

j k +Xn
j k+1

δy2
, (3.2)

Xn+1
j k −X

n+1/2
j k

δt/2
=
X
n+1/2
j−1 k − 2X

n+1/2
j k +X

n+1/2
j+1 k

δx2
+
Xn+1
j k−1 − 2Xn+1

j k +Xn+1
j k+1

δy2
. (3.3)

Spatially semi-implicit schemes are much easier to handle with lower numerical costs compared
to fully implicit ones. It has been proven that the Peaceman-Rachford scheme is unconditionally
stable [20].
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3.2. Derivative-free Milstein method
In the following we will explain how the discretised interaction-noise system can be solved using
the derivative-free Milstein method and how spatiotemporally correlated noise can be generated.
For numerical integration, the derivative-free Milstein method is used, cf. [25, 39, 40] but also the
short descriptions [11, 49]. Sometimes and in particular for the purpose of this study, it is even
sufficient to consider purely diagonal intensity matrices

gii(X) =
ωiiX

m
i

γii + aiiXn
i

; aii ≡ 1 ; i = 1, 2, 3 ; 1 ≤ m ≤ n ≤ 2 . (3.4)

Then, the Milstein scheme reads with time step ∆t and Stratonovich interpretation

X i
t+∆t = X i

t + fi(X
i
t)∆t+ gii(X

i
t)∆Wi +

1

2
√

∆t

[
gii(X̄

i
t)− gii(X i

t

]
(∆Wi)

2 , (3.5)

with

X̄ i
t = X i

t + fi(X
i
t)∆t+ gii(X

i
t)
√

∆t ,

and

∆Wi = W i
t+∆t −W i

t ∼
√

∆tN (0, 1) .

As usual, N (0, 1) stands for the normal distribution with zero mean and unity variance. The
required uniformly distributed random numbers are generated with the Mersenne Twister [33], the
normally distributed with the common Box-Muller algorithm [3].

3.3. Generation of correlated Gaussian random fields
Garcı́a-Ojalvo and Sancho [12, 13] developed a method for generating spatially and temporally
coloured noise from the stochastic reaction-diffusion equation

∂ζ(~r, t)

∂t
=
λ2

τ
∆ζ(~r, t)− 1

τ
ζ(~r, t) +

1

τ
η(~r, t) (3.6)

Here, the term η(~r, t) stands for uncorrelated (white) noise. The parameters τ and λ determine
the correlation lengths in the temporal and the spatial domain, respectively. In addition, a scal-
ing factor ε for the variance of normally-distributed random variables in Fourier space has to be
chosen. The authors introduce Eq. (3.6) as an analogon of the Ornstein-Uhlenbeck process which

is the solution of (3.6) without the spatial term
λ2

τ
∆ζ(r, t). But it has to be noted that for two-

dimensional space (and spatial dimensions exceeding two) the solutions of equation (3.6) will be
generalised functions rather than functions in a space such as L2. Thus, strictly speaking, we are
generating discrete spatiotemporally coloured random fields that are derived from the model (3.6)
without being approximate solutions of the continuous problem.
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The spatiotemporal random field ζ(~r, t) is simulated by transforming a discretised version ζij(t)
of (3.6) to Fourier space:

ζµν(t) = (∆x)2

L∑
i,j=1

exp(−ik · ~r)ζij(t) (3.7)

We denote the discrete Fourier transform ζµν(t) with greek indices µ, ν rather than i, j and the
coordinate k in frequency space is

k =
2π

L∆x
(µ, ν), µ, ν = 0, . . . , L− 1.

Then the Fourier transformed field ζµν(t) at the next time step t+ ∆t is calculated by

ζµν(t+ ∆t) = ζµν(t) exp
(
−cµν
τ

∆t
)

+

√
ε(L∆x)2

τcµν

[
1− exp

(
−cµν
τ

∆t
)]
αµν (3.8)

Here, αµν is the Fourier transform of an uncorrelated Gaussian noise field αij . The efficiency
of this method is increased by directly generating the Fourier transformed field αµν . The (complex-
valued) discrete Fourier transform αµν of real-valued fields αij obeys some symmetries that lead
to the following restrictions:

αµν = α∗
L−µ,L−ν (3.9)

αµν ∈ R, for µ, ν = 0,
L

2
(3.10)

where z∗ denotes the complex conjugate of z ∈ C. The condition (3.9) means that αµν have
the same real part as αL−µ,L−ν found by reflecting through the centre (µ = ν = 1/2) whereas the
imaginary parts only differ by opposite signs.

Also in (3.8), cµν is the Fourier transform of the discretisation of the differential operator L =
id−λ2∆:

cµν = 1− 2λ2

(∆x)2

[
cos

(
2πµ

L

)
+ cos

(
2πν

L

)
− 2

]
. (3.11)

For further details on the derivation of this method, we refer the reader to [12] or [13].

4. Resident-invader competition-diffusion model with infected
invader in a variable environment

4.1. Local dynamics with multiplicative white noise and induced transitions
Not surprising and like for q = 0 [59, 64], Lehmann [28] and Woyzichovski [67] found disease-
induced oscillations for q = 1 as well. Their interesting result was that there may be bistability
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of the resident-only state and the limit cycle when coexisting resident, susceptible and infected
invaders oscillate, cf. Figure 1. The following parameters have been used for the latter setting:

r1 = 1.2500 , r2 = 1.0000 , r3 = 0.6775

c11 = 0.5000 , c12 = 0.8500 , c21 = 0.4250 , c13 = 0.5000 , c31 = 0.5000 (4.1)
c22 = 0.6000 , c23 = 0.4000 , c32 = 0.6010 , c33 = 0.5000

λ = 0.4000 , µ = 0.0250

All other semi-trivial states turn out to be unstable for this parameter range.
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Figure 1: Bistability of resident-only state and oscillating coexistence

Now, one effect of white noise in locally multiple stable systems is shown, i.e., the switch from
one stable attractor to the other for sufficiently but not too high noise intensity. For simplicity, the
linear density dependence (2.17) of the intensity is chosen, which has been successfully applied to
numerous cases. Here, the leaving of the initial limit cycle is demonstrated.
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Figure 2: Noise-induced transitions from oscillating coexistence to resident-only state resp. resi-
dent extinction. Linear density dependence (2.17) with ωii = 0.1 i = 1, 2, 3 .

The three subfigures of Figure 2 show typical outcomes of hundreds of simulations with dif-
ferent seeds of the random number generator. The left subfigure shows the persistence of the
limit cycle whereas the middle demonstrates the expected leaving of the cycle for the other stable
stationary solution, i.e., the resident-only state. The result in the right subfigure appeared a bit
unexpected, however, due to some catastrophic shift, the resident died out and the remaining sus-
ceptible and infected invader survived. One should have in mind that the latter (0, Xs

2 , X
s
3) state is

unstable to the reintroduction of the resident.
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4.2. Invasions and noise I
4.2.1. Linear noise and biocontrol of invasion

For the beginning, the results in the mentioned previous papers [29, 30], where simulated landslides
led to bare land competitively re-invadable by resident and invader, are reproduced with external
noise. The initial condition is a “red” invader patch at its emergent carrying capacity r22/c22 at the
“upper left corner” of the “green” habitat of the native species at r11/c11. This patch should exceed
the related critical patch size. Otherwise it will simply decay regardless of its competitive strength
and mobility [31, 43]. Zero-flux boundary conditions are applied.

The linear noise (2.17) and parameters from the previous publications have been taken:

r1 = 1.000 , r2 = 1.000 , r3 = 0.800

c11 = 1.000 , c12 = 1.300 , c21 = 1.200 , c13 = 1.299 , c31 = 1.201

c22 = 0.999 , c23 = 0.998 , c32 = 1.001 , c33 = 1.000 (4.2)
λ = 0.405 , µ = 0.200

ωii = 0.250 ; Di = 45.000 ; i = 1, 2, 3.

The invader patch spreads and seems to grow unstoppable.

t=240 480 720 960 1190

t=240 480 720 960 1190

Figure 3: Simulation 1: Parameters as given in (4.2). The first row shows results with white noise,
the second row shows spatiotemporally coloured noise with ωii = 0.03, ε = 0.001 and correlation
lengths τ = 1 and λ = 1.

Then, a biological control measure is applied. The invader population is partly infected and the
invasion successfully rolled back.

The changes of the fraction of the invaded area can be seen in Figure 5.
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t=1200 1400 1600 1800 2000

Figure 4: Simulation 1 continued: Partial “blue” infection of the invader at t=1200.
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Figure 5: Fraction of invaded area before and after partial infection.

4.2.2. Nonlinear response to noise and noise control of invasion

We now consider the saturating response to noise described above (2.18) with

m = n = 2 ; ω11 = 50 , ω22 = 0.1 , ω33 = 10 ;

γ11 = 100 , γ22 = 3 , γ33 = 300. (4.3)

The extinction of the invader due to hostile environmental conditions is shown in Figure 6. The
resident is used and adapted to the environment and happily survives.

This dynamics is only due to the specific noise response of the populations. All growth and
interaction parameters remained the same as in sec. 4.2.1.

4.3. Invasions and noise IIa
Coming back to the parameter range of bistability of resident-only state and oscillating coexistence
of all three populations, i.e., parameters (4.1), the initial condition is chosen as uniformly popu-
lated by the resident X1 at its emergent carrying capacity. At a defined location at the boundary, an
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t=100 300 400 500 700

t=500 1000 1500 2000 2500

Figure 6: Repressed invasion through population-specific nonlinearly density-dependent noise in-
tensities for white noise in the first row. In the second row for coloured noise with correlation
lengths τ = 1 and λ = 1, ω11 = 0.05, ω22 = ω33 = 0.01 qualitatively similar behaviour is ob-
served, albeit on a much slower timescale. However, other simulations have shown that stronger
temporal and spatial correlations can support invasions.

initial patch of the invading populations X2 and X3 attempts to spread. Again, simply linear noise
(2.17) is applied and the influence of increasing noise intensity ωii = ω ; i = 1, 2, 3 ; studied.

It is seen in Figure 7 that a successful invasion requires a certain supercritical noise intensity.
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Figure 7: Decline resp. growth of invaded area for increasing white noise intensity.
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Somehow, the resident supports the invasion of its own area. Diffusion and noise enhance the
mixing of resident and invaders at the front. Therefore, all three together jump on the stable limit
cycle of coexistence and invade the remaining invader-free area, cf. Figure 8.

t=0 100 150 350 750

Figure 8: Upper row: Successful fast invasion of the resident’s area for linear white noise (2.17)
with ωii = 0.5 ; i = 1, 2, 3 . Lower row: Stopped invasion of the resident’s area for nonlinear noise
(4.3) with ωii = 0.25 ; i = 1, 2, 3 ; γ11 = 1.00 , γ22 = 25.00 , γ33 = 4.00 .

The following Figure 9 shows that weakly correlated noise still allows for invasion but stronger
correlated does not.
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200 500 2000 4000

t=0 100 150 500 1200

Figure 9: Same parameters as in Fig. 8. The invasion is successful for coloured noise and cor-
relation lengths τ = λ = 1 but unsuccessful for τ = λ = 15. Other parameters ε = 0.001,
ωii = 0.05.

After some difficulties at the beginning that can be the end for the invader at lower noise
intensities, the purple invader patch turns into the blue of the limit cycle. Finally, the resident
survives but has to share its habitat with the aliens. However, if the nonlinear response or coloured
noise is applied, the invasion can be stopped and rolled back again.

4.4. Invasions and noise IIb
Now, it is assumed that the limit cycle of resident and invaders has already invaded most of the
area and only a small part is left for the resident alone. Again, the parameters (4.1) are used. For
this situation several interesting patterns appear that are again purely due to different properties of
the environmental noise.

4.4.1. Dependence on noise intensity

It is surprising that the resident turns out to be strong enough to defeat the invasion as far the noise
is below a subcritical threshold. The fraction of invaded area over time is plotted in Figure 10. An
example for the defeat of invasion is given in Figure 11.
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Figure 10: Decline resp. growth of invaded area for increasing white noise intensity.

t=0 1500 3000 4500 6000

Figure 11: Finally successful defeat of invasion for no noise (upper row) resp. white noise with
ωii = 0.1 ; i = 1, 2, 3.

A preliminary conclusion is that increasing linearly density-dependent white noise supports
invasion. In Figure 12, the cloudy result for ωii = 0.25 is shown.

Increasing the noise intensity and both correlation lengths (τ = λ = 20) leads to a situation
where native and resident gain and lose control over parts of the spatial domain in an alternating
fashion (Figure 13). It seems that the resident is slowly getting the upper hand: at t = 7500 roughly
two thirds of the domain are occupied by natives, at t = 10000 the resident has lost a few areas
and displaced the invader in a few others.
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t=100 1000 2000 4500 6000

Figure 12: Cloudy invasion for linear white noise with ωii = 0.25 ; i = 1, 2, 3. Initial condition as
in Figure 11.

t=50 500 2000 7500 10000

Figure 13: Resident and invader fight under coloured noise for territory creating a highly irregular
pattern for ωii = 0.1 , ε = 0.001 , τ = 20 , λ = 20 . Initial condition as in Figure 11.

4.4.2. Metapopulation patches

This does not necessarily change for nonlinear noise, however, one setting is found where the
fraction of invaded area is dropped down from initially 98% to 21%. The resident population splits
into three metapopulations, spatially separated by the invader populations, cf. Figure 14.

t=500 1000 1500 2300 6000

Figure 14: Stable formation of spatially separated patches of the resident population for white
noise intensity ωii = 0.25 ; i = 1, 2, 3 ; γ11 = 1.0 , γ22 = 25.0 , γ33 = 4.0 . Initial condition as in
Figure 11.

As observed above, higher noise intensities ω help the invader to establish by stabilising the
coexistence limit cycle. In contrast, stronger correlations i.e. increasing correlation lengths τ in
time or λ in space generally enable the native species to displace the invaders. Only for relatively
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high correlation lengths of 10 or above the native species is able to form patches and avoid a cloudy
invasion as in Figure 12.

In Figure 15, for a low noise intensity ωii = 0.03, τ = 1 and λ = 15 we observe the emergence
of a quasi-stationary pattern similar to Figure 14.

t=340 1000 2000 3000 6000

Figure 15: Resident slowly displaces invader while forming seemingly stable spatially separated
patches, similar to the results in Figure 14 but without nonlinearity in the noise term. Parameters:
ωii = 0.03 , ε = 0.001 , τ = 1 , λ = 15 . Initial condition as in Figure 11.

4.4.3. Spiral waves

Wavy structures are found as well, however, at the cost of full invasion. One example is presented
in Figure 16.

t=500 1700 2250 5500 6000

Figure 16: Stable formation of spatially separated patches of the resident population for linear
white noise intensity ωii = 0.3 ; i = 1, 2, 3 ; γ11 = 0.5625 , γ22 = 4.0 , γ33 = 9.0 . Initial
condition as in Figure 11.

For nonlinear noise, the spiral waves seen in Figure 16 can also be observed if the noise is
coloured. For small values of spatial and temporal correlation lengths (τ = λ = 1), smaller and
slightly more irregular spiral waves can be observed, cf. Figure 17.

For increased correlation in time or space (e.g. τ = 1 as above but λ = 5), the native population
can still maintain a spreading front that eventually displaces the spiral waves formed in its wake,
cf. Figure 18.
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t=1000 t=2000 t=5000 t=7000 t=9000

Figure 17: Formation of spiral waves – similar to Figure 16 but less regular – for coloured noise
intensity ωii = 0.03 ; i = 1, 2, 3 ; ε = 0.001 , τ = 1 , λ = 1 , γ11 = 0.5625 , γ22 = 4.0 , γ33 =
9.0 . Initial condition as in Figure 11.

t=1000 t=2000 t=5000 t=7000 t=9000

Figure 18: For increased spatial correlation the spiral waves are displaced by a front of natives.
Parameters: ωii = 0.03 ; i = 1, 2, 3 ; ε = 0.001 , τ = 1 , λ = 5, γ11 = 0.5625 , γ22 = 4.0 , γ33 =
9.0 . Initial condition as in Figure 11.

5. Conclusions
Populations are exposed to fluctuations of many environmental parameters such as nutrient avail-
ability, temperature etc. that may have positive or adverse effects. Whereas it would be impractical
to explicitly consider a host of factors that each on their own may only have a small influence on
growth or decline of the population it is possible to represent the collective effect of these factors as
stochastic environmental variability. The standard model for stochastic environmental variability
in population dynamics are stochastic differential equations with a multiplicative noise term.

In this model, the matrix of maximum noise intensities ω is the only parameter that can be used
for capturing all aspects of environmental fluctuations. The standard assumption that environmen-
tal noise is temporally and spatially uncorrelated neglects the fact that many environmental factors
are, in fact, typically correlated.

Whereas at first glance it seems that this can be convincingly justified by assuming that the
spatial and temporal correlation lengths τ and λ of the noise are much shorter than the spatiotem-
poral scale under consideration, we have demonstrated in this study that using correlated instead
of uncorrelated noise may lead to qualitatively very different model behaviour. Thus, neglecting
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possible correlations may, in fact, lead to different explanations of the observed system behaviour.

Another implicit assumption that has previously been unquestioned is the linear increase of
noise intensity with population number. This model implies that environmental effects on each
individual in a population simply add up to an overall effect on the population. In our opinion
it is likely that for increasing population numbers, perturbations should not independently affect
each individual but rather saturate due to interactions of the individuals so that the collective re-
sponse of the population saturates to a maximum noise intensity for large population numbers.
This model requires an additional matrix γ which characterises the ability of the population to
“buffer” stochastic fluctuations: for low values of γii, population Xi is exposed to intensities close
to the maximum noise level ωii for low or moderate population numbers whereas for a population
with a large γii the noise intensity ωii is only reached for high population numbers.

The results presented in this paper have been obtained for purely diagonal noise intensity ma-
trices. More complex forms are left to future work.
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H. Kesten, J. B. Walsh (Eds.), École d’été de probabilités de Saint-Flour XIV - 1984, vol.
1180 of Lecture Notes in Mathematics. Springer, Berlin, 1986, pages 265–437.

[66] M. Williamson. Biological invasions, vol. 15 of Population and Community Biology Series.
Chapman & Hall, London, 1996.

[67] T. Woyzichovski. Der Einfluss von Rauschen und Infektion in einem Konkurrenzmodell
fremder und indigener Spezies. Diplomarbeit, Institut für Umweltsystemforschung, Fach-
bereich Mathematik/Informatik, Universität Osnabrück (2013).

26


