338 research outputs found

    Anatomical characteristics of the lingual foramen in ancient skulls: a cone beam computed tomography study in an Anatolian population

    Get PDF
    Background: The purpose of this study is to evaluate the anatomical features of lingual foramina and their bony canals in Anatolian ancient mandibles (9–10th century) by using cone beam computed tomography (CBCT). Materials and methods: Fifty-eight ancient dry mandibles were scanned with CBCT. Lingual foramina were grouped into midline, paramedian, posterior foramina and combination of these groups. Midline group was also classified according to internal surface of the mandible (gonial tubercles [GTs]). The incidence, vertical distance and diameter of lingual foramina were measured according to age groups and gender. Results: The incidence of the lingual foramen was 96.6%. Midline of the symphysis had the highest incidence (34.4%) of foramina (p < 0.05), followed by both midline and paramedian type (32.8%; p < 0.05). Classification in terms of GT represented class 3 as the most encountered group (28.6%). Number of foramina observed in the mandibles ranged from 0 to 6 with the incidence of 3.4% and 32.8%, respectively. The male and < 35 years groups presented larger measurement values in midline region (p < 0.05). Conclusions: Mandibular lingual foramina and bony canals are frequently present in ancient mandibles. When compared with modern subjects, similar findings are observed according to published literatures. CBCT is also proved to be an effective imaging modality in the detection of lingual foramina and canals in anthropological studies

    Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells

    Get PDF
    We studied in vitro effects of glycogen synthase kinase 3β (GSK3β)-inhibitor lithium on the growth of hepatocellular carcinoma (HCC) cells. Lithium induced strong growth inhibition (>70%) in 75% (n = 9 of 12) of cell lines, apparently independent from the status of major genes that are mutated in HCC including p53, p16INK4a, β-catenin and Axin1. Comparative studies with a growth-sensitive Huh7 and growth-resistant Hep40 cell lines showed that lithium induces growth arrest in Huh7 cells but not in Hep40 cells. Lithium induced the accumulation of N-terminally phosphorylated inactive form of GSK3β with concomitant increase in β-catenin and β-catenin/TCF transcriptional activity in both cell lines. This suggests that lithium-mediated HCC growth inhibition is independent of its well-known stimulatory effect on Wnt-β-catenin signaling. The main differences between Huh7 and Hep40 responses to lithium treatment were observed at the levels PKB/Akt and cyclin E proteins. Lithium induced depletion of both proteins in growth-sensitive Huh7, but not in growth-resistant Hep40 cells. PKB/Akt and Cyclin E are 2 major proteins that are known to be constitutively active in HCC. The targeting of both proteins with lithium may be the main reason why most HCC cells are responsive to lithium-mediated growth inhibition, independent of their p53, retinoblastoma and Wnt-β-catenin pathways. The exploration of molecular mechanisms involved in lithium-mediated growth inhibition in relation with PKB/Akt and cyclin E downregulation may provide new insights for therapy of liver tumors. © 2005 Wiley-Liss, Inc

    Cracking the code of oscillatory activity

    Get PDF
    Neural oscillations are ubiquitous measurements of cognitive processes and dynamic routing and gating of information. The fundamental and so far unresolved problem for neuroscience remains to understand how oscillatory activity in the brain codes information for human cognition. In a biologically relevant cognitive task, we instructed six human observers to categorize facial expressions of emotion while we measured the observers' EEG. We combined state-of-the-art stimulus control with statistical information theory analysis to quantify how the three parameters of oscillations (i.e., power, phase, and frequency) code the visual information relevant for behavior in a cognitive task. We make three points: First, we demonstrate that phase codes considerably more information (2.4 times) relating to the cognitive task than power. Second, we show that the conjunction of power and phase coding reflects detailed visual features relevant for behavioral response-that is, features of facial expressions predicted by behavior. Third, we demonstrate, in analogy to communication technology, that oscillatory frequencies in the brain multiplex the coding of visual features, increasing coding capacity. Together, our findings about the fundamental coding properties of neural oscillations will redirect the research agenda in neuroscience by establishing the differential role of frequency, phase, and amplitude in coding behaviorally relevant information in the brai

    Stochastic Resonance of Ensemble Neurons for Transient Spike Trains: A Wavelet Analysis

    Full text link
    By using the wavelet transformation (WT), we have analyzed the response of an ensemble of NN (=1, 10, 100 and 500) Hodgkin-Huxley (HH) neurons to {\it transient} MM-pulse spike trains (M=13M=1-3) with independent Gaussian noises. The cross-correlation between the input and output signals is expressed in terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is evaluated by using the {\it denoising} method within the WT, by which the noise contribution is extracted from output signals. Although the response of a single (N=1) neuron to sub-threshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the cross-correlation and SNR is shown to be much improved by increasing the value of NN: a population of neurons play an indispensable role in the stochastic resonance (SR) for transient spike inputs. It is also shown that in a large-scale ensemble, the transmission fidelity for supra-threshold transient spikes is not significantly degraded by a weak noise which is responsible to SR for sub-threshold inputs.Comment: 20 pages, 4 figure

    Symmetrized mean-field description of magnetic instabilities in k-(BEDT-TTF)_2Cu[N(CN)]_2 Y salts

    Full text link
    We present a novel and convenient mean-field method, and apply it to study the metallic/antiferromagnetic interface of k-(BEDT-TTF)_2Cu[N(CN)]_2 Y organic superconductors (BEDT_TTF is bis-ethylen-dithio-tetrathiafulvalene, Y=Cl, Br). The method, which fully exploits the crystal symmetry, allows one to obtain the mean-field solution of the 2D Hubbard model for very large lattices, up to 6x10^5 sites, yielding a reliable description of the phase boundary in a wide region of the parameter space. The metal/antiferromagnet transtion appears to be second order, except for a narrow region of the parameter space, where the transition is very sharp and possibly first order. The cohexistence of metallic and antiferromagnetic properties is only observed for the transient state in the case of smooth second order transitions. The relevance of the present resaults to the complex experimental behavior of centrosymmetric k-phase BEDT-TTF salts is discussed.Comment: 9 pages in PS format, 7 figures (included in PS), 1 tabl

    Risk Factors for and Prediction of Post-Intubation Hypotension in Critically Ill Adults: A Multicenter Prospective Cohort Study

    Get PDF
    OBJECTIVE: Hypotension following endotracheal intubation in the ICU is associated with poor outcomes. There is no formal prediction tool to help estimate the onset of this hemodynamic compromise. Our objective was to derive and validate a prediction model for immediate hypotension following endotracheal intubation. METHODS: A multicenter, prospective, cohort study enrolling 934 adults who underwent endotracheal intubation across 16 medical/surgical ICUs in the United States from July 2015-January 2017 was conducted to derive and validate a prediction model for immediate hypotension following endotracheal intubation. We defined hypotension as: 1) mean arterial pressure \u3c 65 mmHg; 2) systolic blood pressure \u3c 80 mmHg and/or decrease in systolic blood pressure of 40% from baseline; 3) or the initiation or increase in any vasopressor in the 30 minutes following endotracheal intubation. RESULTS: Post-intubation hypotension developed in 344 (36.8%) patients. In the full cohort, 11 variables were independently associated with hypotension: increasing illness severity; increasing age; sepsis diagnosis; endotracheal intubation in the setting of cardiac arrest, mean arterial pressure \u3c 65 mmHg, and acute respiratory failure; diuretic use 24 hours preceding endotracheal intubation; decreasing systolic blood pressure from 130 mmHg; catecholamine and phenylephrine use immediately prior to endotracheal intubation; and use of etomidate during endotracheal intubation. A model excluding unstable patients’ pre-intubation (those receiving catecholamine vasopressors and/or who were intubated in the setting of cardiac arrest) was also developed and included the above variables with the exception of sepsis and etomidate. In the full cohort, the 11 variable model had a C-statistic of 0.75 (95% CI 0.72, 0.78). In the stable cohort, the 7 variable model C-statistic was 0.71 (95% CI 0.67, 0.75). In both cohorts, a clinical risk score was developed stratifying patients’ risk of hypotension. CONCLUSIONS: A novel multivariable risk score predicted post-intubation hypotension with accuracy in both unstable and stable critically ill patients. STUDY REGISTRATION: Clinicaltrials.gov identifier: NCT02508948 and Registered Report Identifier: RR2-10.2196/11101

    Cross-frequency coupling of brain oscillations in studying motivation and emotion

    Get PDF
    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion
    corecore