590 research outputs found
Thermal Operators in Ising Percolation
We discuss a new cluster representation for the internal energy and the
specific heat of the d-dimensional Ising model, obtained by studying the
percolation mapping of an Ising model with an arbitrary set of
antiferromagnetic links. Such a representation relates the thermal operators to
the topological properties of the Fortuin-Kasteleyn clusters of Ising
percolation and is a powerful tool to get new exact relations on the
topological structure of FK clusters of the Ising model defined on an arbitrary
graph.Comment: 17 pages, 2 figures. Improved version. Major changes in the text and
in the notations. A missing term added in the specific heat representatio
Off equilibrium response function in the one dimensional random field Ising model
A thorough numerical investigation of the slow dynamics in the d=1 random
field Ising model in the limit of an infinite ferromagnetic coupling is
presented. Crossovers from the preasymptotic pure regime to the asymptotic
Sinai regime are investigated for the average domain size, the autocorrelation
function and staggered magnetization. By switching on an additional small
random field at the time tw the linear off equilibrium response function is
obtained, which displays as well the crossover from the nontrivial behavior of
the d=1 pure Ising model to the asymptotic behavior where it vanishes
identically.Comment: 12 pages, 10 figure
Dynamic heterogeneities in attractive colloids
We study the formation of a colloidal gel by means of Molecular Dynamics
simulations of a model for colloidal suspensions. A slowing down with gel-like
features is observed at low temperatures and low volume fractions, due to the
formation of persistent structures. We show that at low volume fraction the
dynamic susceptibility, which describes dynamic heterogeneities, exhibits a
large plateau, dominated by clusters of long living bonds. At higher volume
fraction, where the effect of the crowding of the particles starts to be
present, it crosses over towards a regime characterized by a peak. We introduce
a suitable mean cluster size of clusters of monomers connected by "persistent"
bonds which well describes the dynamic susceptibility.Comment: 4 pages, 4 figure
Static and dynamic heterogeneities in irreversible gels and colloidal gelation
We compare the slow dynamics of irreversible gels, colloidal gels, glasses
and spin glasses by analyzing the behavior of the so called non-linear
dynamical susceptibility, a quantity usually introduced to quantitatively
characterize the dynamical heterogeneities. In glasses this quantity typically
grows with the time, reaches a maximum and then decreases at large time, due to
the transient nature of dynamical heterogeneities and to the absence of a
diverging static correlation length. We have recently shown that in
irreversible gels the dynamical susceptibility is instead an increasing
function of the time, as in the case of spin glasses, and tends asymptotically
to the mean cluster size. On the basis of molecular dynamics simulations, we
here show that in colloidal gelation where clusters are not permanent, at very
low temperature and volume fractions, i.e. when the lifetime of the bonds is
much larger than the structural relaxation time, the non-linear susceptibility
has a behavior similar to the one of the irreversible gel, followed, at higher
volume fractions, by a crossover towards the behavior of glass forming liquids.Comment: 9 pages, 3 figure
Recommended from our members
The Asp272-Glu282 Region of Platelet Glycoprotein Ib Interacts with the Heparin-binding Site of -Thrombin and Protects the Enzyme from the Heparin-catalyzed Inhibition by Antithrombin III
Platelet glycoprotein Ib (GpIb) mediates interaction with both von Willebrand factor and thrombin. Thrombin binds to GpIb via its heparin-binding site (HBS) (De Candia, E., De Cristofaro, R., De Marco, L., Mazzucato, M., Picozzi, M., and Landolfi, R. (1997) Thromb. Haemostasis 77, 735â740; De Cristofaro, R., De Candia, E., Croce, G., Morosetti, R., and Landolfi, R. (1998) Biochem. J. 332, 643â650). To identify the thrombin-binding domain on GpIbα, we examined the effect of GpIbα1â282, a GpIbα fragment released by the cobra venom mocarhagin on the heparin-catalyzed rate of thrombin inhibition by antithrombin III (AT). GpIbα1â282 inhibited the reaction in a dose-dependent and competitive fashion. In contrast, the GpIbα1â271 fragment, produced by exposing GpIbα1â282 to carboxypeptidase Y, had no effect on thrombin inhibition by the heparin-AT complex. Measurements of the apparent equilibrium constant of the GpIbα1â282 binding to thrombin as a function of different salts (NaCl and tetramethyl-ammonium chloride) concentration (0.1â0.2 M) indicated a large salt dependence (α = â4.5), similar to that pertaining to the heparin binding to thrombin. The importance of thrombin HBS in its interaction with GpIbα was confirmed using DNA aptamers, which specifically bind to either HBS (HD22) or the fibrinogen recognition site of thrombin (HD1). HD22, but not HD1, inhibited thrombin binding to GpIbα1â282. Furthermore, the proteolytic derivative ÎłT-thrombin, which lacks the fibrinogen recognition site, binds to GpIbα via its intact HBS in a reaction that is inhibited by HD22. Neither α- nor ÎłT-thrombin bound to GpIbα1â271, suggesting that the Asp272âGlu282 region of GpIbα may act as a âheparin-likeâ ligand for the thrombin HBS, thereby inhibiting heparin binding to thrombin. It was also demonstrated that intact platelets may dose-dependently inhibit the heparin-catalyzed thrombin inhibition by AT at enzyme concentrations <5 nM. Altogether, these findings show that thrombin HBS binds to the region of GpIbα involving the Asp272âGlu282 segment, protecting the enzyme from the inactivation by the heparin-AT system
Irreversible Opinion Spreading on Scale-Free Networks
We study the dynamical and critical behavior of a model for irreversible
opinion spreading on Barab\'asi-Albert (BA) scale-free networks by performing
extensive Monte Carlo simulations. The opinion spreading within an
inhomogeneous society is investigated by means of the magnetic Eden model, a
nonequilibrium kinetic model for the growth of binary mixtures in contact with
a thermal bath. The deposition dynamics, which is studied as a function of the
degree of the occupied sites, shows evidence for the leading role played by
hubs in the growth process. Systems of finite size grow either ordered or
disordered, depending on the temperature. By means of standard finite-size
scaling procedures, the effective order-disorder phase transitions are found to
persist in the thermodynamic limit. This critical behavior, however, is absent
in related equilibrium spin systems such as the Ising model on BA scale-free
networks, which in the thermodynamic limit only displays a ferromagnetic phase.
The dependence of these results on the degree exponent is also discussed for
the case of uncorrelated scale-free networks.Comment: 9 pages, 10 figures; added results and discussion on uncorrelated
scale-free networks; added references. To appear in PR
Estimates of multipolar coefficients to search for cosmic ray anisotropies with non-uniform or partial sky coverage
We study the possibility to extract the multipolar moments of an underlying
distribution from a set of cosmic rays observed with non-uniform or even
partial sky coverage. We show that if the degree is assumed to be upper bounded
by , each multipolar moment can be recovered whatever the coverage, but with
a variance increasing exponentially with the bound if the coverage is zero
somewhere. Despite this limitation, we show the possibility to test predictions
of a model without any assumption on by building an estimate of the
covariance matrix seen through the exposure function.Comment: 20 pages, 8 figure
Metastable states in the Blume-Emery-Griffiths spin glass model
We study the Blume-Emery-Griffiths spin glass model in presence of an
attractive coupling between real replicas, and evaluate the effective potential
as a function of the density overlap. We find that there is a region, above the
first order transition of the model, where metastable states with a large
density overlap exist. The line where these metastable states appear should
correspond to a purely dynamical transition, with a breaking of ergodicity.
Differently from what happens in p-spin glasses, in this model the dynamical
transition would not be the precursor of a 1-step RSB transition, but
(probably) of a full RSB transition.Comment: RevTeX, 4 pages, 2 fig
Recommended from our members
A Combination of Genomic Approaches Reveals the Role of <i>FOXO1a</i> in Regulating an Oxidative Stress Response Pathway
Background: While many of the phenotypic differences between human and chimpanzee may result from changes in gene regulation, only a handful of functionally important regulatory differences are currently known. As a first step towards identifying transcriptional pathways that have been remodeled in the human lineage, we focused on a transcription factor, FOXO1a, which we had previously found to be up-regulated in the human liver compared to that of three other primate species. We concentrated on this gene because of its known role in the regulation of metabolism and in longevity.Methodology: Using a combination of expression profiling following siRNA knockdown and chromatin immunoprecipitation in a human liver cell line, we identified eight novel direct transcriptional targets of FOXO1a. This set includes the gene for thioredoxin-interacting protein (TXNIP), the expression of which is directly repressed by FOXO1a. The thioredoxin-interacting protein is known to inhibit the reducing activity of thioredoxin (TRX), thereby hindering the cellular response to oxidative stress and affecting life span.Conclusions: Our results provide an explanation for the repeated observations that differences in the regulation of FOXO transcription factors affect longevity. Moreover, we found that TXNIP is down-regulated in human compared to chimpanzee, consistent with the up-regulation of its direct repressor FOXO1a in humans, and with differences in longevity between the two species.</p
Spatial signal amplification in cell biology: a lattice-gas model for self-tuned phase ordering
Experiments show that the movement of eukaryotic cells is regulated by a
process of phase separation of two competing enzymes on the cell membrane, that
effectively amplifies shallow external gradients of chemical attractant.
Notably, the cell is able to self-tune the final enzyme concentrations to an
equilibrium state of phase coexistence, for a wide range of the average
attractant concentration. We propose a simple lattice model in which, together
with a short-range attraction between enzymes, a long-range repulsion naturally
arises from physical considerations, that easily explains such observed
behavior
- âŠ