585 research outputs found

    Lithium abundances in extremely metal-poor turn-off stars

    Full text link
    We discuss the current status of the sample of Lithium abundances in extremely metal poor (EMP) turn-off (TO) stars collected by our group, and compare it with the available literature results. In the last years, evidences have accumulated of a progressive disruption of the Spite plateau in stars of extremely low metallicity. What appears to be a flat, thin plateau above [Fe/H]\sim-2.8 turns, at lower metallicities, into a broader distribution for which the plateau level constitutes the upper limit, but more and more stars show lower Li abundances. The sample we have collected currently counts abundances or upper limits for 44 EMP TO stars between [Fe/H]=-2.5 and -3.5, plus the ultra-metal poor star SDSS J102915+172927 at [Fe/H]=-4.9. The "meltdown" of the Spite plateau is quite evident and, at the current status of the sample, does not appear to be restricted to the cool end of the effective temperature distribution. SDSS J102915+172927 displays an extreme Li depletion that contrasts with its otherwise quite ordinary set of [X/Fe] ratios.Comment: 6 pages, 4 figures, proceedings of the "Lithium in the Cosmos" conference, Paris, 27-29 February 201

    Chemical evolution of the Milky Way: the origin of phosphorus

    Full text link
    Context. Recently, for the first time the abundance of P has been measured in disk stars. This provides the opportunity of comparing the observed abundances with predictions from theoretical models. Aims. We aim at predicting the chemical evolution of P in the Milky Way and compare our results with the observed P abundances in disk stars in order to put constraints on the P nucleosynthesis. Methods. To do that we adopt the two-infall model of galactic chemical evolution, which is a good model for the Milky Way, and compute the evolution of the abundances of P and Fe. We adopt stellar yields for these elements from different sources. The element P should have been formed mainly in Type II supernovae. Finally, Fe is mainly produced by Type Ia supernovae. Results. Our results confirm that to reproduce the observed trend of [P/Fe] vs. [Fe/H] in disk stars, P is formed mainly in massive stars. However, none of the available yields for P can reproduce the solar abundance of this element. In other words, to reproduce the data one should assume that massive stars produce more P than predicted by a factor of ~ 3. Conclusions. We conclude that all the available yields of P from massive stars are largely underestimated and that nucleosynthesis calculations should be revised. We also predict the [P/Fe] expected in halo stars.Comment: Accepted for publication in A&A (minor changes with respect to the submitted version

    MyGIsFOS: an automated code for parameter determination and detailed abundance analysis in cool stars

    Full text link
    The current and planned high-resolution, high-multiplexity stellar spectroscopic surveys, as well as the swelling amount of under-utilized data present in public archives have led to an increasing number of efforts to automate the crucial but slow process to retrieve stellar parameters and chemical abundances from spectra. We present MyGIsFOS, a code designed to derive atmospheric parameters and detailed stellar abundances from medium - high resolution spectra of cool (FGK) stars. We describe the general structure and workings of the code, present analyses of a number of well studied stars representative of the parameter space MyGIsFOS is designed to cover, and examples of the exploitation of MyGIsFOS very fast analysis to assess uncertainties through Montecarlo tests. MyGIsFOS aims to reproduce a ``traditional'' manual analysis by fitting spectral features for different elements against a precomputed grid of synthetic spectra. Fe I and Fe II lines can be employed to determine temperature, gravity, microturbulence, and metallicity by iteratively minimizing the dependence of Fe I abundance from line lower energy and equivalent width, and imposing Fe I - Fe II ionization equilibrium. Once parameters are retrieved, detailed chemical abundances are measured from lines of other elements. MyGIsFOS replicates closely the results obtained in similar analyses on a set of well known stars. It is also quite fast, performing a full parameter determination and detailed abundance analysis in about two minutes per star on a mainstream desktop computer. Currently, its preferred field of application are high-resolution and/or large spectral coverage data (e.g UVES, X-Shooter, HARPS, Sophie).Comment: 15 pages, 14 figures, accepted for publication by A&

    Granulation properties of giants, dwarfs, and white dwarfs from the CIFIST 3D model atmosphere grid

    Full text link
    3D model atmospheres for giants, dwarfs, and white dwarfs, computed with the CO5BOLD code and part of the CIFIST grid, have been used for spectroscopic and asteroseismic studies. Unlike existing plane-parallel 1D structures, these simulations predict the spatially and temporally resolved emergent intensity so that granulation can be analysed, which provides insights on how convective energy transfer operates in stars. The wide range of atmospheric parameters of the CIFIST 3D simulations (3600 < Teff (K) < 13,000 and 1 < log g < 9) allows the comparison of convective processes in significantly different environments. We show that the relative intensity contrast is correlated with both the Mach and Peclet numbers in the photosphere. The horizontal size of granules varies between 3 and 10 times the local pressure scale height, with a tight correlation between the factor and the Mach number of the flow. Given that convective giants, dwarfs, and white dwarfs cover the same range of Mach and Peclet numbers, we conclude that photospheric convection operates in a very similar way in those objects.Comment: 16 pages, 17 figures, 37 pages online appendix, accepted for publication in Astronomy and Astrophysic

    Lithium abundance and 6Li/7Li ratio in the active giant HD123351 I. A comparative analysis of 3D and 1D NLTE line-profile fits

    Full text link
    Current three-dimensional (3D) hydrodynamical model atmospheres together with NLTE spectrum synthesis, permit to derive reliable atomic and isotopic chemical abundances from high-resolution stellar spectra. Not much is known about the presence of the fragile 6Li isotope in evolved solar-metallicity RGB stars, not to mention its production in magnetically active targets like HD123351. From fits of the observed CFHT spectrum with synthetic line profiles based on 1D and 3D model atmospheres, we seek to estimate the abundance of the 6Li isotope and to place constraints on its origin. We derive A(Li) and the 6Li/7Li isotopic ratio by fitting different synthetic spectra to the Li-line region of a high-resolution CFHT spectrum (R=120 000, S/R=400). The synthetic spectra are computed with four different line lists, using in parallel 3D hydrodynamical CO5BOLD and 1D LHD model atmospheres and treating the line formation of the lithium components in non-LTE (NLTE). We find A(Li)=1.69+/-0.11 dex and 6Li/7Li=8.0+/-4.4 % in 3D-NLTE, using the line list of Mel\'endez et al. (2012), updated with new atomic data for V I, which results in the best fit of the lithium line profile of HD123351. Two other line lists lead to similar results but with inferior fit qualities. Our 2-sigma detection of the 6Li isotope is the result of a careful statistical analysis and the visual inspection of each achieved fit. Since the presence of a significant amount of 6Li in the atmosphere of a cool evolved star is not expected in the framework of standard stellar evolution theory, non-standard, external lithium production mechanisms, possibly related to stellar activity or a recent accretion of rocky material, need to be invoked to explain the detection of 6Li in HD123351.Comment: 16 pages, 11 figures. Accepted for publication in A&

    An upper limit on the sulphur abundance in HE 1327-2326

    Get PDF
    Context: Star HE 1327-2326 is a unique object, with the lowest measured iron abundance ([Fe/H] ~ -6) and a peculiar chemical composition that includes large overabundances of C, N, and O with respect to iron. One important question is whether the chemical abundances in this star reflect the chemical composition of the gas cloud from which it was formed or if they have been severely affected by other processes, such as dust-gas winnowing. Aims: We measure or provide an upper limit to the abundance of the volatile element sulphur, which can help to discriminate between the two scenarios. Methods: We observed HE 1327-2326 with the high resolution infra-red spectrograph CRIRES at the VLT to observe the S I lines of Multiplet 3 at 1045 nm. Results: We do not detect the S I line. A 3sigma$upper limit on the equivalent width (EW) of any line in our spectrum is EW<0.66 pm. Using either one-dimensional static or three-dimensional hydrodynamical model-atmospheres, this translates into a robust upper limit of [S/H]<-2.6. Conclusions: This upper limit does not provide conclusive evidence for or against dust-gas winnowing, and the evidence coming from other elements (e.g., Na and Ti) is also inconclusive or contradictory. The formation of dust in the atmosphere versus an origin of the metals in a metal-poor supernova with extensive "fall-back" are not mutually exclusive. It is possible that dust formation distorts the peculiar abundance pattern created by a supernova with fall-back, thus the abundance ratios in HE 1327-2326 may be used to constrain the properties of the supernova(e) that produced its metals, but with some caution.Comment: Accepted by Astronomy & Astrophysics Minor typos in the abstract correcte
    • …
    corecore