374 research outputs found

    Landscape ideology in the Greater Golden Horseshoe Greenbelt Plan: Negotiating material landscapes and abstract ideals in the city\u27s countryside

    Get PDF
    We analyze the role of landscape ideology in the recent Ontario Greater Golden Horseshoe (GGH) Greenbelt Plan. Focusing on the “Protected Countryside,” the major land-use designation in the Plan that structures the Greenbelt framework, we explore tensions between abstract ideals of countryside used by policy makers to elicit support for the Plan and people\u27s lived experience of material landscapes of the peri-urban fringe. Approaching “countryside” from the combined perspectives of landscape studies and political ecology, we show how the abstract ideals used to build support for the protection of countryside in the high-level political arena are in tension with existing material landscapes as people experience them. When implementing the Greenbelt Plan, the abstract ideals have to be applied at the landscape level through negotiation with municipalities, property owners, and other interests. In addition to drawing upon more conventionally legitimate explanations for landscape protection based on environmental science and land-use planning principles, the designation of Protected Countryside and the strategies used to implement the Protected Countryside designation at the local level suggest a tentative commitment to recognizing landscape values and collaborative environmental management processes in policy-making. As with any such normative land-use plan, the success of the Greenbelt Plan hinges on the long-term agreement between planning agencies and diverse publics. We demonstrate the usefulness of approaching environmental management challenges at the urban–rural interface by bringing the perspectives of landscape studies and political ecology into implementation processes for land-use management strategies like the Greenbelt. We argue that public participants deserve legitimate collaborative roles in negotiating just and desirable land uses based on their experiences, and provide observations on ways to bring contested goals and tools for achieving them into reflexive negotiations about how landscapes are and should be produced

    Work Product Doctrine

    Get PDF

    Mycobacterium tuberculosis proteins involved in cell wall lipid biosynthesis improve BCG vaccine efficacy in a murine TB model

    Get PDF
    OBJECTIVES: Advances in tuberculosis (TB) vaccine development are urgently required to enhance global disease management. We evaluated the potential of Mycobacterium tuberculosis (M. tb)-derived protein antigens Rv0447c, Rv2957 and Rv2958c to boost BCG vaccine efficacy in the presence or absence of glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) adjuvant. METHODS: Mice received the BCG vaccine, followed by Rv0447c, Rv2957 and Rv2958c protein boosting with or without GLA-SE adjuvant 3 and 6 weeks later. Immune responses were examined at given time points. 9 weeks post vaccination, mice were aerosol-challenged with M. tb, and sacrificed at 6 and 12 weeks to assess bacterial burden. RESULTS: Vaccination of mice with BCG and M. tb proteins in the presence of GLA-SE adjuvant triggered strong IFN-γ and IL-2 production by splenocytes; more TNF-α was produced without GLA-SE addition. Antibody responses to all three antigens did not differ, with or without GLA-SE adjuvant. Protein boosting without GLA-SE adjuvant resulted in vaccinated animals having better control of pulmonary M. tb load at 6 and 12 weeks post aerosol infection, while animals receiving the protein boost with GLA-SE adjuvant exhibited more bacteria in the lungs. CONCLUSIONS: Our data provides evidence for developing Rv2958c, Rv2957 and Rv0447c in a heterologous prime-boost vaccination strategy with BCG

    The Personal Genome Project-UK, an open access resource of human multi-omics data

    Get PDF
    Integrative analysis of multi-omics data is a powerful approach for gaining functional insights into biological and medical processes. Conducting these multifaceted analyses on human samples is often complicated by the fact that the raw sequencing output is rarely available under open access. The Personal Genome Project UK (PGP-UK) is one of few resources that recruits its participants under open consent and makes the resulting multi-omics data freely and openly available. As part of this resource, we describe the PGP-UK multi-omics reference panel consisting of ten genomic, methylomic and transcriptomic data. Specifically, we outline the data processing, quality control and validation procedures which were implemented to ensure data integrity and exclude sample mix-ups. In addition, we provide a REST API to facilitate the download of the entire PGP-UK dataset. The data are also available from two cloud-based environments, providing platforms for free integrated analysis. In conclusion, the genotype-validated PGP-UK multi-omics human reference panel described here provides a valuable new open access resource for integrated analyses in support of personal and medical genomics

    Characterizing planetary systems with SPIRou: M-dwarf planet-search survey and the multiplanet systems GJ 876 and GJ 1148

    Full text link
    SPIRou is a near-infrared spectropolarimeter and a high-precision velocimeter. The SPIRou Legacy Survey collected data from February 2019 to June 2022, half of the time devoted to a blind search for exoplanets around nearby cool stars. The aim of this paper is to present this program and an overview of its properties, and to revisit the radial velocity (RV) data of two multiplanet systems, including new visits with SPIRou. From SPIRou data, we can extract precise RVs using efficient telluric correction and line-by-line measurement techniques, and we can reconstruct stellar magnetic fields from the collection of polarized spectra using the Zeeman-Doppler imaging method. The stellar sample of our blind search in the solar neighborhood, the observing strategy, the RV noise estimates, chromatic behavior, and current limitations of SPIRou RV measurements on bright M dwarfs are described. In addition, SPIRou data over a 2.5-year time span allow us to revisit the known multiplanet systems GJ~876 and GJ~1148. For GJ~876, the new dynamical analysis including the four planets is consistent with previous models and confirms that this system is deep in the Laplace resonance and likely chaotic. The large-scale magnetic map of GJ~876 over two consecutive observing seasons is obtained and shows a dominant dipolar field with a polar strength of 30~G, which defines the magnetic environment in which the inner planet with a period of 1.94~d is embedded. For GJ~1148, we refine the known two-planet model.Comment: accepted in A&

    Monitoring the large-scale magnetic field of AD~Leo with SPIRou, ESPaDOnS and Narval. Toward a magnetic polarity reversal?

    Full text link
    One manifestation of dynamo action on the Sun is the 22-yr magnetic cycle, exhibiting a polarity reversal and a periodic conversion between poloidal and toroidal fields. For M dwarfs, several authors claim evidence of activity cycles from photometry and analyses of spectroscopic indices, but no clear polarity reversal has been identified from spectropolarimetric observations. Our aim is to monitor the evolution of the large-scale field of AD Leo, which has shown hints of a secular evolution from past dedicated spectropolarimetric campaigns. We analysed near-infrared spectropolarimetric observations of the active M dwarf AD Leo taken with SPIRou between 2019 and 2020 and archival optical data collected with ESPaDOnS and Narval between 2006 and 2019. We searched for long-term variability in the longitudinal field, the width of unpolarised Stokes profiles, the unsigned magnetic flux derived from Zeeman broadening, and the geometry of the large-scale magnetic field using both Zeeman-Doppler Imaging and Principal Component Analysis. We found evidence of a long-term evolution of the magnetic field, featuring a decrease in axisymmetry (from 99% to 60%). This is accompanied by a weakening of the longitudinal field (-300 to -50 G) and a correlated increase in the unsigned magnetic flux (2.8 to 3.6 kG). Likewise, the width of the mean profile computed with selected near-infrared lines manifests a long-term evolution corresponding to field strength changes over the full time series, but does not exhibit modulation with the stellar rotation of AD Leo in individual epochs. The large-scale magnetic field of AD Leo manifested first hints of a polarity reversal in late 2020 in the form of a substantially increased dipole obliquity, while the topology remained predominantly poloidal and dipolar. This suggests that low-mass M dwarfs with a dipole-dominated magnetic field can undergo magnetic cycles.Comment: 26 pages, 18 figures, 8 table

    The magnetic field and multiple planets of the young dwarf AU~Mic

    Full text link
    In this paper we present an analysis of near-infrared spectropolarimetric and velocimetric data of the young M dwarf AU Mic, collected with SPIRou at the Canada-France-Hawaii telescope from 2019 to 2022, mostly within the SPIRou Legacy Survey. With these data, we study the large- and small-scale magnetic field of AU Mic, detected through the unpolarized and circularly-polarized Zeeman signatures of spectral lines. We find that both are modulated with the stellar rotation period (4.86 d), and evolve on a timescale of months under differential rotation and intrinsic variability. The small-scale field, estimated from the broadening of spectral lines, reaches 2.61±0.052.61\pm0.05 kG. The large-scale field, inferred with Zeeman-Doppler imaging from Least-Squares Deconvolved profiles of circularly-polarized and unpolarized spectral lines, is mostly poloidal and axisymmetric, with an average intensity of 550±30550\pm30 G. We also find that surface differential rotation, as derived from the large-scale field, is ≃\simeq30% weaker than that of the Sun. We detect the radial velocity (RV) signatures of transiting planets b and c, although dwarfed by activity, and put an upper limit on that of candidate planet d, putatively causing the transit-timing variations of b and c. We also report the detection of the RV signature of a new candidate planet (e) orbiting further out with a period of 33.39±0.1033.39\pm0.10 d, i.e., near the 4:1 resonance with b. The RV signature of e is detected at 6.5σ\sigma while those of b and c show up at ≃\simeq4σ\sigma, yielding masses of 10.2−2.7+3.910.2^{+3.9}_{-2.7} and 14.2−3.5+4.814.2^{+4.8}_{-3.5} Earth masses for b and c, and a minimum mass of 35.2−5.4+6.735.2^{+6.7}_{-5.4} Earth masses for e.Comment: MNRAS, in press (20 pages and 12 figures + 9 pages of supplementary material
    • 

    corecore