2,271 research outputs found

    Integrating Information Literacy into the Virtual University: A Course Model

    Get PDF
    published or submitted for publicatio

    Structure of the stationary state of the asymmetric target process

    Full text link
    We introduce a novel migration process, the target process. This process is dual to the zero-range process (ZRP) in the sense that, while for the ZRP the rate of transfer of a particle only depends on the occupation of the departure site, it only depends on the occupation of the arrival site for the target process. More precisely, duality associates to a given ZRP a unique target process, and vice-versa. If the dynamics is symmetric, i.e., in the absence of a bias, both processes have the same stationary-state product measure. In this work we focus our interest on the situation where the latter measure exhibits a continuous condensation transition at some finite critical density ρc\rho_c, irrespective of the dimensionality. The novelty comes from the case of asymmetric dynamics, where the target process has a nontrivial fluctuating stationary state, whose characteristics depend on the dimensionality. In one dimension, the system remains homogeneous at any finite density. An alternating scenario however prevails in the high-density regime: typical configurations consist of long alternating sequences of highly occupied and less occupied sites. The local density of the latter is equal to ρc\rho_c and their occupation distribution is critical. In dimension two and above, the asymmetric target process exhibits a phase transition at a threshold density ρ0\rho_0 much larger than ρc\rho_c. The system is homogeneous at any density below ρ0\rho_0, whereas for higher densities it exhibits an extended condensate elongated along the direction of the mean current, on top of a critical background with density ρc\rho_c.Comment: 30 pages, 16 figure

    Competition and cooperation:aspects of dynamics in sandpiles

    Full text link
    In this article, we review some of our approaches to granular dynamics, now well known to consist of both fast and slow relaxational processes. In the first case, grains typically compete with each other, while in the second, they cooperate. A typical result of {\it cooperation} is the formation of stable bridges, signatures of spatiotemporal inhomogeneities; we review their geometrical characteristics and compare theoretical results with those of independent simulations. {\it Cooperative} excitations due to local density fluctuations are also responsible for relaxation at the angle of repose; the {\it competition} between these fluctuations and external driving forces, can, on the other hand, result in a (rare) collapse of the sandpile to the horizontal. Both these features are present in a theory reviewed here. An arena where the effects of cooperation versus competition are felt most keenly is granular compaction; we review here a random graph model, where three-spin interactions are used to model compaction under tapping. The compaction curve shows distinct regions where 'fast' and 'slow' dynamics apply, separated by what we have called the {\it single-particle relaxation threshold}. In the final section of this paper, we explore the effect of shape -- jagged vs. regular -- on the compaction of packings near their jamming limit. One of our major results is an entropic landscape that, while microscopically rough, manifests {\it Edwards' flatness} at a macroscopic level. Another major result is that of surface intermittency under low-intensity shaking.Comment: 36 pages, 23 figures, minor correction

    Reddenings of FGK supergiants and classical Cepheids from spectroscopic data

    Get PDF
    Accurate and homogeneous atmospheric parameters (Teff, log (g), Vt, [Fe/H]) are derived for 74 FGK non-variable supergiants from high-resolution, high signal-to-noise ratio, echelle spectra. Extremely high precision for the inferred effective temperatures (10-40 K) is achieved by using the line-depth ratio method. The new data are combined with atmospheric values for 164 classical Cepheids, observed at 675 different pulsation phases, taken from our previously published studies. The derived values are correlated with unreddened B-V colours compiled from the literature for the investigated stars in order to obtain an empirical relationship of the form: (B-V)o = 57.984 - 10.3587(log Teff)^2 + 1.67572(log Teff)^3 - 3.356(log (g)) + 0.0321(Vt) + 0.2615[Fe/H] + 0.8833((log (g))(log Teff)). The expression is used to estimate colour excesses E(B-V) for individual supergiants and classical Cepheids, with a precision of +-0.05 mag. for supergiants and Cepheids with n=1-2 spectra, reaching +-0.025 mag. for Cepheids with n>2 spectra, matching uncertainties for the most sophisticated photometric techniques. The reddening scale is also a close match to the system of space reddenings for Cepheids. The application range is for spectral types F0--K0 and luminosity classes I and II.Comment: accepted for publication (MNRAS

    Statistics of leaders and lead changes in growing networks

    Full text link
    We investigate various aspects of the statistics of leaders in growing network models defined by stochastic attachment rules. The leader is the node with highest degree at a given time (or the node which reached that degree first if there are co-leaders). This comprehensive study includes the full distribution of the degree of the leader, its identity, the number of co-leaders, as well as several observables characterizing the whole history of lead changes: number of lead changes, number of distinct leaders, lead persistence probability. We successively consider the following network models: uniform attachment, linear attachment (the Barabasi-Albert model), and generalized preferential attachment with initial attractiveness.Comment: 28 pages, 14 figures, 1 tabl

    A record-driven growth process

    Full text link
    We introduce a novel stochastic growth process, the record-driven growth process, which originates from the analysis of a class of growing networks in a universal limiting regime. Nodes are added one by one to a network, each node possessing a quality. The new incoming node connects to the preexisting node with best quality, that is, with record value for the quality. The emergent structure is that of a growing network, where groups are formed around record nodes (nodes endowed with the best intrinsic qualities). Special emphasis is put on the statistics of leaders (nodes whose degrees are the largest). The asymptotic probability for a node to be a leader is equal to the Golomb-Dickman constant omega=0.624329... which arises in problems of combinatorical nature. This outcome solves the problem of the determination of the record breaking rate for the sequence of correlated inter-record intervals. The process exhibits temporal self-similarity in the late-time regime. Connections with the statistics of the cycles of random permutations, the statistical properties of randomly broken intervals, and the Kesten variable are given.Comment: 30 pages,5 figures. Minor update

    On leaders and condensates in a growing network

    Full text link
    The Bianconi-Barabasi model of a growing network is revisited. This model, defined by a preferential attachment rule involving both the degrees of the nodes and their intrinsic fitnesses, has the fundamental property to undergo a phase transition to a condensed phase below some finite critical temperature, for an appropriate choice of the distribution of fitnesses. At high temperature it exhibits a crossover to the Barabasi-Albert model, and at low temperature, where the fitness landscape becomes very rugged, a crossover to the recently introduced record-driven growth process. We first present an analysis of the history of leaders, the leader being defined as the node with largest degree at a given time. In the generic finite-temperature regime, new leaders appear endlessly, albeit on a doubly logarithmic time scale, i.e., extremely slowly. We then give a novel picture for the dynamics in the condensed phase. The latter is characterized by an infinite hierarchy of condensates, whose sizes are non-self-averaging and keep fluctuating forever.Comment: 29 pages, 13 figures, 3 tables. A few minor change

    Theoretical Models for Classical Cepheids: IV. Mean Magnitudes and Colors and the Evaluation of Distance, Reddening and Metallicity

    Full text link
    We discuss the metallicity effect on the theoretical visual and near-infrared PL and PLC relations of classical Cepheids, as based on nonlinear, nonlocal and time--dependent convective pulsating models at varying chemical composition. In view of the two usual methods of averaging (magnitude-weighted and intensity-weighted) observed magnitudes and colors over the full pulsation cycle, we briefly discuss the differences between static and mean quantities. We show that the behavior of the synthetic mean magnitudes and colors fully reproduces the observed trend of Galactic Cepheids, supporting the validity of the model predictions. In the second part of the paper we show how the estimate of the mean reddening and true distance modulus of a galaxy from Cepheid VK photometry depend on the adopted metal content, in the sense that larger metallicities drive the host galaxy to lower extinctions and distances. Conversely, self-consistent estimates of the Cepheid mean reddening, distance and metallicity may be derived if three-filter data are taken into account. By applying the theoretical PL and PLC relations to available BVK data of Cepheids in the Magellanic Clouds we eventually obtain Z \sim 0.008, E(B-V) \sim 0.02 mag, DM \sim 18.63 mag for LMC and Z \sim 0.004, E(B-V) \sim 0.01 mag., DM \sim 19.16 mag. for SMC. The discrepancy between such reddenings and the current values based on BVI data is briefly discussed.Comment: 16 pages, 11 postscript figures, accepted for publication on Ap

    Growth and Structure of Stochastic Sequences

    Full text link
    We introduce a class of stochastic integer sequences. In these sequences, every element is a sum of two previous elements, at least one of which is chosen randomly. The interplay between randomness and memory underlying these sequences leads to a wide variety of behaviors ranging from stretched exponential to log-normal to algebraic growth. Interestingly, the set of all possible sequence values has an intricate structure.Comment: 4 pages, 4 figure
    corecore