263 research outputs found

    Risk of Cesarean scar defect following single- vs double-layer uterine closure: systematic review and meta-analysis of randomized controlled trials

    Get PDF
    OBJECTIVE: There is a growing body of evidence that suggests that the surgical technique for uterine closure following Cesarean delivery influences the healing of the Cesarean scar, but there is still no consensus on the optimal technique. The aim of this systematic review and meta-analysis was to compare the effect of single- vs double-layer uterine closure on the risk of uterine scar defect. METHODS: MEDLINE, Scopus, ClinicalTrials.gov, PROSPERO, EMBASE and the Cochrane Central Register of Controlled Trials were searched from inception of each database until May 2016. All randomized controlled trials (RCTs) evaluating the effect of single- vs double-layer uterine closure following low transverse Cesarean section on the risk of uterine scar defect were included. The primary outcome was the incidence of uterine scar defects detected on ultrasound. Secondary outcomes were residual myometrial thickness evaluated by ultrasound and the incidence of uterine dehiscence and/or rupture in subsequent pregnancy. Summary measures were reported as relative risk (RR) or mean difference (MD), with 95% CIs. Quality of the evidence was assessed using the GRADE approach. RESULTS: Nine RCTs (3969 participants) were included in the meta-analysis. The overall risk of bias of the included trials was low. Statistical heterogeneity within the studies was low, with no inconsistency in the primary and secondary outcomes. Women who received single-layer uterine closure had a similar incidence of uterine scar defects as did women who received double-layer closure (25% vs 43%; RR, 0.77 (95% CI, 0.36-1.64); five trials; 350 participants; low quality of evidence). Compared with double-layer uterine closure, women who received single-layer closure had a significantly thinner residual myometrium on ultrasound (MD, -2.19 mm (95% CI, -2.80 to -1.57 mm); four trials; 374 participants; low quality of evidence). No difference was found in the incidence of uterine dehiscence (0.4% vs 0.2%; RR, 1.34 (95% CI, 0.24-4.82); three trials; 3421 participants; low quality of evidence) or uterine rupture (0.1% vs 0.1%; RR, 0.52 (95% CI, 0.05-5.53); one trial; 3234 participants; low quality of evidence) in a subsequent pregnancy. CONCLUSIONS: Single- and double-layer closure of the uterine incision following Cesarean delivery are associated with a similar incidence of Cesarean scar defects, as well as uterine dehiscence and rupture in a subsequent pregnancy. However, the quality level of summary estimates, as assessed by GRADE, was low, indicating that the true effect may be, or is even likely to be, substantially different from the estimate of the effect

    Prediction of preterm birth with and without preeclampsia using mid-pregnancy immune and growth-related molecular factors and maternal characteristics.

    Get PDF
    OBJECTIVE:To evaluate if mid-pregnancy immune and growth-related molecular factors predict preterm birth (PTB) with and without (±) preeclampsia. STUDY DESIGN:Included were 400 women with singleton deliveries in California in 2009-2010 (200 PTB and 200 term) divided into training and testing samples at a 2:1 ratio. Sixty-three markers were tested in 15-20 serum samples using multiplex technology. Linear discriminate analysis was used to create a discriminate function. Model performance was assessed using area under the receiver operating characteristic curve (AUC). RESULTS:Twenty-five serum biomarkers along with maternal age <34 years and poverty status identified >80% of women with PTB ± preeclampsia with best performance in women with preterm preeclampsia (AUC = 0.889, 95% confidence interval (0.822-0.959) training; 0.883 (0.804-0.963) testing). CONCLUSION:Together with maternal age and poverty status, mid-pregnancy immune and growth factors reliably identified most women who went on to have a PTB ± preeclampsia

    Women's preference for cesarean delivery and differences between Taiwanese women undergoing different modes of delivery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of cesarean delivery was 35% in 2007 in Taiwan. It is unclear how many of the cesarean deliveries were without medical indications. Women's preference for cesarean delivery during their course of pregnancy has rarely been studied and therefore our objectives were to examine rate of cesarean deliveries without medical indications, to explore women's preference for cesarean delivery as their gestation advances, and to compare background and perinatal factors among women who underwent different modes of delivery in Taiwan.</p> <p>Methods</p> <p>This prospective study applied a longitudinal design. The study participants were 473 women who received prenatal care at four hospitals in Taipei and answered structured questionnaires at 20 to 24 weeks of pregnancy, 34 to 36 weeks of pregnancy, and 5 to 7 weeks after delivery.</p> <p>Results</p> <p>Of the 151 women (31.9%) who had cesarean deliveries, 19.9% were without medical indication. Three indications: malpresentation, prior cesarean section, and dysfunctional labor together accounted for 82.6% of cesarean section with medical indications. The prevalence of maternal preference for cesarean delivery was found to be 12.5% and 17.5% during the second and third trimester, respectively. Of the women who preferred cesarean delivery during the second trimester, 93.2% eventually had a cesarean delivery. Women who were older, with older spouses, and who had health problems before or during pregnancy were more likely to have cesarean deliveries.</p> <p>Conclusions</p> <p>About 20% of cesarean deliveries were without medical indications. Women's preference for cesarean delivery during the second trimester predicts subsequent cesarean delivery. Counseling regarding mode of delivery should be offered early in pregnancy, especially for women who are older or with older spouses, have health problems, or had a prior cesarean section.</p

    Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

    Get PDF
    The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.This work was funded by the EU-FP7 project BLUEPRINT (282510) and the Wellcome Trust (99148). We thank all twins for taking part in this study; Kerra Pearce and Mark Kristiansen (UCL Genomics) for processing the Illumina Infinium HumanMethylation450 BeadChips; Rasmus Bennet for technical assistance; and Laura Phipps for proofreading the manuscript. The BMBF Pediatric Diabetes Biobank recruits patients from the National Diabetes Patient Documentation System (DPV), and is financed by the German Ministry of Education and Research within the German Competence Net Diabetes Mellitus (01GI1106 and 01GI1109B). It was integrated into the German Center for Diabetes Research in January 2015. We thank the Swedish Research Council and SUS Funds for support. We gratefully acknowledge the participation of all NIHR Cambridge BioResource volunteers, and thank the Cambridge BioResource staff for their help with volunteer recruitment. We thank members of the Cambridge BioResource SAB and Management Committee for their support of our study and the NIHR Cambridge Biomedical Research Centre for funding. The Cardiovascular Epidemiology Unit is supported by the UK Medical Research Council (G0800270), BHF (SP/09/002), and NIHR Cambridge Biomedical Research Centre. Research in the Ouwehand laboratory is supported by the NIHR, BHF (PG-0310-1002 and RG/09/12/28096) and NHS Blood and Transplant. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is supported by the BHF Cambridge Centre of Excellence (RE/13/6/30180). A.D., E.L., L.C. and P.F. receive additional support from the European Molecular Biology Laboratory. A.K.S. is supported by an ADA Career Development Award (1-14-CD-17). B.O.B. and R.D.L. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) and European Federation for the Study of Diabetes, respectively

    Effect of Antihypertensive Therapy with Alpha Methyldopa on Levels of Angiogenic Factors in Pregnancies with Hypertensive Disorders

    Get PDF
    Antihypertensive drugs are believed to lower blood pressure in pre-eclampsia by direct or central vasodilatory mechanisms. However, they could also act by decreasing production of anti-angiogenic proteins involved in the pathophysiology of hypertension and proteinuria in pre-eclampsia (PE). The aim of our study was to evaluate the impact of antihypertensive therapy with alpha methyldopa on maternal circulating levels and placental production of soluble fms-like tyrosine kinase 1 (sFlt-1), soluble endoglin (sEng), vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) in hypertensive disorders of pregnancy

    Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells

    Get PDF
    Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+^{+} monocytes, CD16+^{+} neutrophils, and naive CD4+^{+} T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis\textit{cis}-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.This work was predominantly funded by the EU FP7 High Impact Project BLUEPRINT (HEALTH-F5-2011-282510) and the Canadian Institutes of Health Research (CIHR EP1-120608). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 282510 (BLUEPRINT), the European Molecular Biology Laboratory, the Max Planck society, the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-0208 and Spanish National Bioinformatics Institute (INB-ISCIII) PT13/0001/0021 co-funded by FEDER "“Una Manera de hacer Europa”. D.G. is supported by a “la Caixa”-Severo Ochoa pre-doctoral fellowship, M.F. was supported by the BHF Cambridge Centre of Excellence [RE/13/6/30180], K.D. is funded as a HSST trainee by NHS Health Education England, S.E. is supported by a fellowship from La Caixa, V.P. is supported by a FEBS long-term fellowship and N.S.'s research is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510) and the NIHR BRC. The Blood and Transplant Unit (BTRU) in Donor Health and Genomics is part of and funded by the National Institute for Health Research (NIHR) and is a partnership between the University of Cambridge and NHS Blood and Transplant (NHSBT) in collaboration with the University of Oxford and the Wellcome Trust Sanger Institute. The T-cell data was produced by the McGill Epigenomics Mapping Centre (EMC McGill). It is funded under the Canadian Epigenetics, Environment, and Health Research Consortium (CEEHRC) by the Canadian Institutes of Health Research and by Genome Quebec (CIHR EP1-120608), with additional support from Genome Canada and FRSQ. T.P. holds a Canada Research Chair
    corecore