635 research outputs found

    Influential Factors Contributing to Exercise Compliance Following a Structured Lifestyle Change Program

    Get PDF
    Cardiovascular disease remains the number one cause of death in the United States, with five hundred thousand people diagnosed annually. Even though regular exercise has been shown to dramatically reduce the risk of cardiovascular disease, few hospitals offer programs that focus on the requisite lifestyle changes for participants to maintain long-term exercise programs. In an effort to determine what factors contribute to long-term exercise compliance, this study surveyed 279 participants of the Scripps Ornish/Healing Hearts program, a comprehensive lifestyle change program, to identify the factors that helped explain variation in exercise compliance among program completers. Results of the hierarchical multiple regression analysis suggests that demographic factors, lifestyle habits, and safety issues were all important compliance factors for the 178 survey respondents. Specifically, participants who completed the program most recently, had a postgraduate education, a history of exercise, and exercised with a partner were more likely to comply following the completion of the formal program than those not exhibiting these characteristics. On the other hand, exercise compliance dropped following program completion for those who needed to exercise with a group. Taken together, these findings clearly demonstrate the importance of a support system for successful exercise compliance, and Scripps is urged to expand their services to include some sort of post-program support system. In addition, recommendations for future research include expanding this design to include other populations and settings as well as investigating exercise compliance after the implementation of a post-program support structure. Hopefully the results of this study will lead to lower morbidity and better quality of life for all individuals, since exercise compliance is not just an issue for cardiac patients, but for all members of society

    Root Bacteria Recruited by Phragmites australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration

    Get PDF
    The microbiome associated with plants used in phytodepuration systems can boost plant growth and services, especially in ecosystems dealing with recalcitrant compounds, hardly removed via traditional wastewater (WW) treatments, such as azo-dyes used in textile industry. In this context, we aimed to study the cultivable microbiome selected by Phragmites australis plants in a Constructed Wetland (CW) in Morocco, in order to obtain candidate inoculants for the phytodepuration of azo-dye contaminated WW. A collection of 152 rhizospheric and endophytic bacteria was established. The strains were phylogenetically identified and characterized for traits of interest in the phytodepuration context. All strains showed Plant Growth Promotion potential in vitro and 67% of them significantly improved the growth of a model plant in vivo compared to the non bacterized control plants. Moreover, most of the isolates were able to grow in presence of several model micropollutants typically found in WW, indicating their potential use in phytodepuration of a wide spectrum of effluents. The six most promising strains of the collection were tested in CW microcosms alone or as consortium: the consortium and two single inocula demonstrated to significantly increase the removal of the model azo-dye Reactive Black 5 compared to the non bacterized controls

    Microbial assisted phytodepuration for water reclamation: Environmental benefits and threats

    Get PDF
    Climate changes push for water reuse as a priority to counteract water scarcity and minimize water footprint especially in agriculture, one of the highest water consuming human activities. Phytodepuration is indicated as a promising technology for water reclamation, also in the light of its economic and ecological sustainability, and the use of specific bacterial inocula for microbial assisted phytodepuration has been proposed as a further advance for its implementation. Here we provided an overview on the selection and use of plant growth promoting bacteria in Constructed Wetland (CW) systems, showing their advantages in terms of plant growth support and pollutant degradation abilities. Moreover, CWs are also proposed for the removal of emerging organic pollutants like antibiotics from urban wastewaters. We focused on this issue, still debated in the literature, revealing the necessity to deepen the knowledge on the antibiotic resistance spread into the environment in relation to treated wastewater release and reuse. In addition, given the presence in the plant system of microhabitats (e.g. rhizosphere) that are hot spot for Horizontal Gene Transfer, we highlighted the importance of gene exchange to understand if these events can promote the diffusion of antibiotic resistance genes and antibiotic resistant bacteria, possibly entering in the food production chain when treated wastewater is used for irrigation. Ideally, this new knowledge will lead to improve the design of phytodepuration systems to maximize the quality and safety of the treated effluents in compliance with the 'One Health' concept

    Vegetated ditches for the mitigation of pesticides runoff in the po valley

    Get PDF
    In intensive agricultural systems runoff is one of the major potential diffuse pollution path- ways for pesticides and poses a risk to surface water. Ditches are common in the Po Valley and can potentially provide runoff mitigation for the protection of watercourses. The effec- tiveness depends on ditch characteristics, so there is an urgent need for site-specific field trials. The use of a fugacity model (multimedia model) can allows recognition of the mitiga- tion main processes. A field experiment was conducted in order to evaluate the mitigation capacity of a typical vegetated ditch, and results were compared with predictions by a fugacity model. To evaluate herbicide mitigation after an extreme runoff, the ditch was flooded with water containing mesotrione, S-metolachlor and terbuthylazine. Two other sub- sequent floods with uncontaminated water were applied 27 and 82 days later to evaluate herbicides release. Results show that the ditch can immediately reduce runoff concentration of herbicides by at least 50% even in extreme flooding conditions. The half-distances were about 250 m. As a general rule, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch. Herbicides retention in the vegetated ditch was reversible, and the second flood mobilized 0.03-0.2% of the previous one, with a concentration below the drinking water limit of 0.1 \u3bcg L-1. No herbicide was detected in the third flood, because the residual amount in the ditch was too low. Fugacity model results show that specific physical-chemi- cal parameters may be used and a specific soil-sediment-plant compartment included for modelling herbicides behaviour in a vegetated ditch, and confirm that accumulation is low or negligible for herbicides with a half-life of 40 days or less. Shallow vegetated ditches can thus be included in a general agri-environment scheme for the mitigation of pesticides runoff together with wetlands and linear buffer strips. These structures are present in the land- scape, and their environmental role can be exploited by proper management

    Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Get PDF
    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10?MPa, corresponding to a depth of 0, 500 and 1000?m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10?MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10?MPa CO2 production per cell was not affected, cell integrity was preserved and PO43- uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential

    Methods for the genetic manipulation of marine bacteria

    Get PDF
    Genetic manipulation of bacteria is a procedure necessary to obtain new strains that express peculiar and defined genetic determinants or to introduce genetic variants responsible for phenotypic modifications. This procedure can be applied to explore the biotechnological potential associated with environmental bacteria and to utilize the functional properties of specific genes when inserted into an appropriate host. In the past years, marine bacteria have received increasing attention because they represent a fascinating reservoir of genetic and functional diversity that can be utilized to fuel the bioeconomy sector. However, there is an urgent need for an in-depth investigation and improvement of the genetic manipulation tools applicable to marine strains because of the paucity of knowledge regarding this. This review aims to describe the genetic manipulation methods hitherto used in marine bacteria, thus highlighting the limiting factors of the different techniques available today to increase manipulation efficiency. In particular, we focus on methods of natural and artificial transformations (especially electroporation) and conjugation because they have been successfully applied to several marine strains. Finally, we emphasize that, to avoid failure, future work should be carried out to establish tailored methodologies for marine bacteria. How to cite: Zeaiter Z, Mapelli F, Crotti E, et al. Methods for the genetic manipulation of marine bacteria. Electron J Biotechnol 2018;33. https://doi.org/10.1016/j.ejbt.2018.03.003
    • …
    corecore