14,021 research outputs found
The baryon mass function for galaxy clusters
Context: The evolution of the cluster abundance with redshift is known to be
a powerful cosmological constraint when applied to X-ray clusters. Recently,
the evolution of the baryon mass function has been proposed as a new variant
that is free of the uncertainties present in the temperature-mass relation. A
flat model with Omega_matter ~ 0.3 was shown to be preferred in the case of a
standard cold dark matter scenario.
Aims: We compared the high redshift predictions of the baryon mass in
clusters with data for a more general class of spectra with a varying shape
factor Gamma without any restriction to the standard cold dark matter scenario
in models normalized to reproduce the local baryon mass function.
Methods: Using various halo mass functions existing in the literature we
evaluated the corresponding baryon mass functions for the case of the
non-standard power spectra mentioned previously.
Results: We found that models with Omega_matter ~ 1 and Gamma ~ 0.12
reproduce high redshift cluster data just as well as the concordance model
does.
Conclusions: Finally, we conclude that the baryon mass function evolution
alone does not efficiently discriminate between the more general family of flat
cosmological models with non-standard power spectra.Comment: Typos corrected. Replaced to match published version. 5 pages, 2
figures, aa.cl
Radar response from vegetation with nodal structure
Radar images from the SEASAT synthetic aperture radar (SAR) produced unusually high returns from corn and sorghum fields, which seem to indicate a correlation between nodal separation in the stalk and the wavelength of the radar. These images also show no difference in return from standing or harvested corn. Further investigation using images from the Shuttle Imaging Radar (SIR-A) substantiated these observations and showed a degradation of the high return with time after harvest. From portions of corn and sweet sorghum stalks that were sampled to measure stalk water content, it was determined that near and after maturity the water becomes more concentrated in the stalk nodes. The stalk then becomes a linear sequence of alternating dielectrics as opposed to a long slender cylinder with uniform dielectric properties
Computer program for solving laminar, transitional, or turbulent compressible boundary-layer equations for two-dimensional and axisymmetric flow
A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software
Expectation-driven interaction: a model based on Luhmann's contingency approach
We introduce an agent-based model of interaction, drawing on the contingency
approach from Luhmann's theory of social systems. The agent interactions are
defined by the exchange of distinct messages. Message selection is based on the
history of the interaction and developed within the confines of the problem of
double contingency. We examine interaction strategies in the light of the
message-exchange description using analytical and computational methods.Comment: 37 pages, 16 Figures, to appear in Journal of Artificial Societies
and Social Simulation
The reversibility of sea ice loss in a state-of-the-art climate model
Rapid Arctic sea ice retreat has fueled speculation about the possibility of threshold (or âtipping pointâ) behavior and irreversible loss of the sea ice cover. We test sea ice reversibility within a state-of-the-art atmosphereâocean global climate model by increasing atmospheric carbon dioxide until the Arctic Ocean becomes ice-free throughout the year and subsequently decreasing it until the initial ice cover returns. Evidence for irreversibility in the form of hysteresis outside the envelope of natural variability is explored for the loss of summer and winter ice in both hemispheres. We find no evidence of irreversibility or multiple ice-cover states over the full range of simulated sea ice conditions between the modern climate and that with an annually ice-free Arctic Ocean. Summer sea ice area recovers as hemispheric temperature cools along a trajectory that is indistinguishable from the trajectory of summer sea ice loss, while the recovery of winter ice area appears to be slowed due to the long response times of the ocean near the modern winter ice edge. The results are discussed in the context of previous studies that assess the plausibility of sea ice tipping points by other methods. The findings serve as evidence against the existence of threshold behavior in the summer or winter ice cover in either hemisphere
A Way Out of the Quantum Trap
We review Event Enhanced Quantum Theory (EEQT). In Section 1 we address the
question "Is Quantum Theory the Last Word". In particular we respond to some of
recent challenging staments of H.P. Stapp. We also discuss a possible future of
the quantum paradigm - see also Section 5. In Section 2 we give a short sketch
of EEQT. Examples are given in Section 3. Section 3.3 discusses a completely
new phenomenon - chaos and fractal-like phenomena caused by a simultaneous
"measurement" of several non-commuting observables (we include picture of
Barnsley's IFS on unit sphere of a Hilbert space). In Section 4 we answer
"Frequently Asked Questions" concerning EEQT.Comment: Replacement. Corrected affiliation. Latex, one .jpg figure. To appear
in Proc. Conf. Relativistic Quantum Measurements, Napoli 1998, Ed. F.
Petruccion
Some expressions of separation anxiety in a group of mentally ill patients
Thesis (M.S.)--Boston Universit
Valse Fantastique
https://digitalcommons.library.umaine.edu/mmb-ps/2825/thumbnail.jp
- âŠ