164 research outputs found

    Mechanism and biological role of profilin-Srv2/CAP interaction

    Get PDF
    Profilin and cyclase-associated protein (CAP, known in yeast as Srv2) are ubiquitous and abundant actin monomer- binding proteins. Profilin catalyses the nucleotide exchange on actin monomers and promotes their addition to filament barbed ends. Srv2/CAP recycles newly depolymerized actin monomers from ADF/cofilin for subsequent rounds of polymerization. Srv2/CAP also harbors two proline- rich motifs and has been suggested to interact with profilin. However, the mechanism and biological role of the possible profilin-Srv2/CAP interaction has not been investigated. Here, we show that Saccharomyces cerevisiae Srv2 and profilin interact directly (K-D similar to 1.3 mu M) and demonstrate that a specific proline-rich motif in Srv2 mediates this interaction in vitro and in vivo. ADP- actin monomers and profilin do not interfere with each other's binding to Srv2, suggesting that these three proteins can form a ternary complex. Genetic and cell biological analyses on an Srv2 allele (srv2-201) defective in binding profilin reveals that a direct interaction with profilin is not essential for Srv2 cellular function. However, srv2-201 causes a moderate increase in cell size and partially suppresses the cell growth and actin organization defects of an actin binding mutant profilin (pfy1-4). Together these data suggest that Srv2 is an important physiological interaction partner of profilin

    Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells

    Get PDF
    Cyclase-associated proteins (CAPs) are highly conserved actin monomer binding proteins present in all eukaryotes. However, the mechanism by which CAPs contribute to actin dynamics has been elusive. In mammals, the situation is further complicated by the presence of two CAP isoforms whose differences have not been characterized. Here, we show that CAP1 is widely expressed in mouse nonmuscle cells, whereas CAP2 is the predominant isoform in developing striated muscles. In cultured NIH3T3 and 1316171 cells, CAP1 is a highly abundant protein that colocalizes with cofilin-1 to dynamic regions of the cortical actin cytoskeleton. Analysis of CAP1 knockdown cells demonstrated that this protein promotes rapid actin filament depolymerization and is important for cell morphology, migration, and endocytosis. Interestingly, depletion of CAP1 leads to an accumulation of cofilin-1 into abnormal cytoplasmic aggregates and to similar cytoskeletal defects to those seen in cofilin-1 knockdown cells, demonstrating that CAP1 is required for proper subcellular localization and function of ADF/cofilin. Together, these data provide the first direct in vivo evidence that CAP promotes rapid actin dynamics in conjunction with ADF/cofilin and is required for several central cellular processes in mammals

    Molecular Characterization of a Novel Staphylococcus Aureus Surface Protein (SasC) Involved in Cell Aggregation and Biofilm Accumulation

    Get PDF
    BACKGROUND:Staphylococci belong to the most important pathogens causing implant-associated infections. Colonization of the implanted medical devices by the formation of a three-dimensional structure made of bacteria and host material called biofilm is considered the most critical factor in these infections. To form a biofilm, bacteria first attach to the surface of the medical device, and then proliferate and accumulate into multilayered cell clusters. Biofilm accumulation may be mediated by polysaccharide and protein factors. METHODOLOGY/PRINCIPAL FINDINGS:The information on Staphylococcus aureus protein factors involved in biofilm accumulation is limited, therefore, we searched the S. aureus Col genome for LPXTG-motif containing potential surface proteins and chose the so far uncharacterized S. aureus surface protein C (SasC) for further investigation. The deduced SasC sequence consists of 2186 amino acids with a molecular mass of 238 kDa and has features typical of gram-positive surface proteins, such as an N-terminal signal peptide, a C-terminal LPXTG cell wall anchorage motif, and a repeat region consisting of 17 repeats similar to the domain of unknown function 1542 (DUF1542). We heterologously expressed sasC in Staphylococcus carnosus, which led to the formation of huge cell aggregates indicative of intercellular adhesion and biofilm accumulation. To localize the domain conferring cell aggregation, we expressed two subclones of sasC encoding either the N-terminal domain including a motif that is found in various architectures (FIVAR) or 8 of the DUF1542 repeats. SasC or its N-terminal domain, but not the DUF1542 repeat region conferred production of huge cell aggregates, higher attachment to polystyrene, and enhanced biofilm formation to S. carnosus and S. aureus. SasC does not mediate binding to fibrinogen, thrombospondin-1, von Willebrand factor, or platelets as determined by flow cytometry. CONCLUSIONS/SIGNIFICANCE:Thus, SasC represents a novel S. aureus protein factor involved in cell aggregation and biofilm formation, which may play an important role in colonization during infection with this important pathogen

    Detection sensitivity of laser feedback interferometry using a terahertz quantum cascade laser

    Get PDF
    We report on the high detection sensitivity of a laser feedback interferometry scheme based on a terahertz frequency quantum cascade laser. We show that variations on the laser voltage induced by optical feedback to the laser can be resolved with reinjection of powers as low as ~−125 dB of the emitted power. Our measurements demonstrate a noise equivalent power of ~1.4 pW/√Hz, although after accounting for reinjection losses we estimate this corresponds to only ~1 fW/√Hz being coupled to the quantum cascade laser active region

    Active phase-nulling of the self-mixing phase in a terahertz frequency quantum cascade laser

    Get PDF
    We demonstrate an active phase-nulling scheme for terahertz (THz) frequency quantum cascade lasers (QCLs) under optical feedback, by active electronic feedback control of the emission frequency. Using this scheme the frequency tuning rate of a THz QCL is characterised, with significantly reduced experimental complexity compared to alternative approaches. Furthermore, we demonstrate real-time displacement sensing of targets, overcoming the resolution limits imposed by quantisation in previously-implemented fringe counting methods. Our approach is readily applicable to high-frequency vibrometry and surface profiling of targets, as well as frequency-stabilisation schemes for THz QCLs

    The Actin-Binding Protein Capulet Genetically Interacts with the Microtubule Motor Kinesin to Maintain Neuronal Dendrite Homeostasis

    Get PDF
    BACKGROUND: Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE: The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease

    Overweight, physical activity, tobacco and alcohol consumption in a cross-sectional random sample of German adults

    Get PDF
    BACKGROUND: There is a current paucity of data on the health behaviour of non-selected populations in Central Europe. Data on health behaviour were collected as part of the EMIL study which investigated the prevalence of infection with Echinococcus multilocularis and other medical conditions in an urban German population. METHODS: Participating in the present study were 2,187 adults (1,138 females [52.0%]; 1,049 males [48.0%], age: 18–65 years) taken from a sample of 4,000 persons randomly chosen from an urban population. Data on health behaviour like physical activity, tobacco and alcohol consumption were obtained by means of a questionnaire, documentation of anthropometric data, abdominal ultrasound and blood specimens for assessment of chemical parameters. RESULTS: The overall rate of participation was 62.8%. Of these, 50.3% of the adults were overweight or obese. The proportion of active tobacco smokers stood at 30.1%. Of those surveyed 38.9% did not participate in any physical activity. Less than 2 hours of leisure time physical activity per week was associated with female sex, higher BMI (Body Mass Index), smoking and no alcohol consumption. Participants consumed on average 12 grams of alcohol per day. Total cholesterol was in 62.0% (>5.2 mmol/l) and triglycerides were elevated in 20.5% (≥ 2.3 mmol/l) of subjects studied. Hepatic steatosis was identified in 27.4% of subjects and showed an association with male sex, higher BMI, higher age, higher total blood cholesterol, lower HDL, higher triglycerides and higher ALT. CONCLUSION: This random sample of German urban adults was characterised by a high prevalence of overweight and obesity. This and the pattern of alcohol consumption, smoking and physical activity can be considered to put this group at high risk for associated morbidity and underscore the urgent need for preventive measures aimed at reducing the significantly increased health risk

    Three-dimensional terahertz imaging using swept-frequency feedback interferometry with a quantum cascade laser

    No full text
    We demonstrate coherent three-dimensional terahertz imaging by frequency modulation of a quantum cascade laser in a compact and experimentally simple self-mixing scheme. Through this approach we can realize significantly faster acquisition rates compared to previous schemes employing longitudinal mechanical scanning of a sample. We achieve a depth resolution of better than 0.1 μm with a power noise spectral density below −50 dB/Hz, for a sampling time of 10 ms/pixel
    • …
    corecore