170 research outputs found

    3D AMR hydrosimulations of a compact source scenario for the Galactic Centre cloud G2

    Full text link
    The nature of the gaseous and dusty cloud G2 in the Galactic Centre is still under debate. We present three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations of G2, modeled as an outflow from a "compact source" moving on the observed orbit. The construction of mock position-velocity (PV) diagrams enables a direct comparison with observations and allow us to conclude that the observational properties of the gaseous component of G2 could be matched by a massive (M˙w=5×10−7  M⊙yr−1\dot{M}_\mathrm{w}=5\times 10^{-7} \;M_{\odot} \mathrm{yr^{-1}}) and slow (50  km  s−150 \;\mathrm{km \;s^{-1}}) outflow, as observed for T Tauri stars. In order for this to be true, only the material at larger (>100  AU>100 \;\mathrm{AU}) distances from the source must be actually emitting, otherwise G2 would appear too compact compared to the observed PV diagrams. On the other hand, the presence of a central dusty source might be able to explain the compactness of G2's dust component. In the present scenario, 5-10 years after pericentre the compact source should decouple from the previously ejected material, due to the hydrodynamic interaction of the latter with the surrounding hot and dense atmosphere. In this case, a new outflow should form, ahead of the previous one, which would be the smoking gun evidence for an outflow scenario.Comment: resubmitted to MNRAS after referee report, 16 pages, 11 figure

    Molecular geometry optimization with a genetic algorithm

    Full text link
    We present a method for reliably determining the lowest energy structure of an atomic cluster in an arbitrary model potential. The method is based on a genetic algorithm, which operates on a population of candidate structures to produce new candidates with lower energies. Our method dramatically outperforms simulated annealing, which we demonstrate by applying the genetic algorithm to a tight-binding model potential for carbon. With this potential, the algorithm efficiently finds fullerene cluster structures up to C60{\rm C}_{60} starting from random atomic coordinates.Comment: 4 pages REVTeX 3.0 plus 3 postscript figures; to appear in Physical Review Letters. Additional information available under "genetic algorithms" at http://www.public.iastate.edu/~deaven

    Stellar feedback efficiencies: supernovae versus stellar winds

    Get PDF
    The final, definitive version of this paper has been published in Monthly Notices of the Royal Astronomical Society, Vol. 456(1): 710-730, February 2016, DOI: 10.1093/mnras/stv2699, published by Oxford University Press on behalf of MNRAS.Stellar winds and supernova (SN) explosions of massive stars (`stellar feedback') create bubbles in the interstellar medium (ISM) and insert newly produced heavy elements and kinetic energy into their surroundings, possibly driving turbulence. Most of this energy is thermalized and immediately removed from the ISM by radiative cooling. The rest is available for driving ISM dynamics. In this work we estimate the amount of feedback energy retained as kinetic energy when the bubble walls have decelerated to the sound speed of the ambient medium. We show that the feedback of the most massive star outweighs the feedback from less massive stars. For a giant molecular cloud (GMC) mass of 105 M⊙ (as e.g. found in the Orion GMCs) and a star formation efficiency of 8 per cent the initial mass function predicts a most massive star of approximately 60 M⊙. For this stellar evolution model we test the dependence of the retained kinetic energy of the cold GMC gas on the inclusion of stellar winds. In our model winds insert 2.34 times the energy of an SN and create stellar wind bubbles serving as pressure reservoirs. We find that during the pressure-driven phases of the bubble evolution radiative losses peak near the contact discontinuity (CD), and thus the retained energy depends critically on the scales of the mixing processes across the CD. Taking into account the winds of massive stars increases the amount of kinetic energy deposited in the cold ISM from 0.1 per cent to a few per cent of the feedback energy.Peer reviewe

    Zero Temperature Phases of the Electron Gas

    Get PDF
    The stability of different phases of the three-dimensional non-relativistic electron gas is analyzed using stochastic methods. With decreasing density, we observe a {\it continuous} transition from the paramagnetic to the ferromagnetic fluid, with an intermediate stability range (25±5≀rs≀35±525\pm 5 \leq r_s\leq 35 \pm 5) for the {\it partially} spin-polarized liquid. The freezing transition into a ferromagnetic Wigner crystal occurs at rs=65±10r_s=65 \pm 10. We discuss the relative stability of different magnetic structures in the solid phase, as well as the possibility of disordered phases.Comment: 4 pages, REVTEX, 3 ps figure

    3D AMR simulations of G2 as an outflow

    Full text link
    We study the evolution of G2 in a \textit{Compact Source Scenario}, where G2 is the outflow from a low-mass central star moving on the observed orbit. This is done through 3D AMR simulations of the hydrodynamic interaction of G2 with the surrounding hot accretion flow. A comparison with observations is done by means of mock position-velocity (PV) diagrams. We found that a massive (M˙w=5×10−7  M⊙  yr−1\dot{M}_\mathrm{w}=5\times 10^{-7} \;M_{\odot} \; \mathrm{yr^{-1}}) and slow (vw=50  km  s−1v_\mathrm{w}=50 \;\mathrm{km\; s^{-1}}) outflow can reproduce G2's properties. A faster outflow (vw=400  km  s−1v_\mathrm{w}=400 \;\mathrm{km\; s^{-1}}) might also be able to explain the material that seems to follow G2 on the same orbit.Comment: 2 pages, 1 figure, Proceedings of IAU Symposium 322: The Multi-Messenger Astrophysics of the Galactic Centr

    Sparse random matrices and vibrational spectra of amorphous solids

    Full text link
    A random matrix approach is used to analyze the vibrational properties of amorphous solids. We investigated a dynamical matrix M=AA^T with non-negative eigenvalues. The matrix A is an arbitrary real NxN sparse random matrix with n independent non-zero elements in each row. The average values =0 and dispersion =V^2 for all non-zero elements. The density of vibrational states g(w) of the matrix M for N,n >> 1 is given by the Wigner quarter circle law with radius independent of N. We argue that for n^2 << N this model can be used to describe the interaction of atoms in amorphous solids. The level statistics of matrix M is well described by the Wigner surmise and corresponds to repulsion of eigenfrequencies. The participation ratio for the major part of vibrational modes in three dimensional system is about 0.2 - 0.3 and independent of N. Together with term repulsion it indicates clearly to the delocalization of vibrational excitations. We show that these vibrations spread in space by means of diffusion. In this respect they are similar to diffusons introduced by Allen, Feldman, et al., Phil. Mag. B 79, 1715 (1999) in amorphous silicon. Our results are in a qualitative and sometimes in a quantitative agreement with molecular dynamic simulations of real and model glasses.Comment: 24 pages, 7 figure

    Density-functional-based predictions of Raman and IR spectra for small Si clusters

    Get PDF
    We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems

    Diffusion Monte Carlo study of circular quantum dots

    Full text link
    We present ground and excited state energies obtained from Diffusion Monte Carlo (DMC) calculations, using accurate multiconfiguration wave functions, for NN electrons (N≀13N\le13) confined to a circular quantum dot. We analyze the electron-electron pair correlation functions and compare the density and correlation energies to the predictions of local spin density approximation theory (LSDA). The DMC estimated change in electrochemical potential as function of the number of electrons in the dot is compared to that from LSDA and Hartree-Fock (HF) calculations.Comment: 7 pages, 4 eps figures. To be published in Phys. Rev. B, September 15th 2000. See erratum cond-mat/030571

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.

    Structure and Dynamics of Liquid Iron under Earth's Core Conditions

    Full text link
    First-principles molecular dynamics simulations based on density-functional theory and the projector augmented wave (PAW) technique have been used to study the structural and dynamical properties of liquid iron under Earth's core conditions. As evidence for the accuracy of the techniques, we present PAW results for a range of solid-state properties of low- and high-pressure iron, and compare them with experimental values and the results of other first-principles calculations. In the liquid-state simulations, we address particular effort to the study of finite-size effects, Brillouin-zone sampling and other sources of technical error. Results for the radial distribution function, the diffusion coefficient and the shear viscosity are presented for a wide range of thermodynamic states relevant to the Earth's core. Throughout this range, liquid iron is a close-packed simple liquid with a diffusion coefficient and viscosity similar to those of typical simple liquids under ambient conditions.Comment: 13 pages, 8 figure
    • 

    corecore