797 research outputs found

    Accelerated design of architectured ceramics with tunable thermal resistance via a hybrid machine learning and finite element approach

    Get PDF
    Abstract Topologically interlocked architectures can transform brittle ceramics into tougher materials, while making the material design procedure a cumbersome task since modeling the whole architectural design space is not efficient and, to a degree, is not viable. We propose an approach to design architectured ceramics using machine learning (ML), trained by finite element analysis data and together with a self-learning algorithm, to discover high-performance architectured ceramics in thermomechanical environments. First, topologically interlocked panels are parametrically generated. Then, a limited number of designed architectured ceramics subjected to a thermal load is studied. Finally, the multilinear perceptron is employed to train the ML model in order to predict the thermomechanical performance of architectured panels with varied interlocking angles and number of blocks. The developed feed-forward artificial neural network framework can boost the architectured ceramic design efficiency and open up new avenues for controllability of the functionality for various high-temperature applications. This study demonstrates that the architectured ceramic panels with the ML-assisted engineered patterns show improvement up to 30% in frictional energy dissipation and 7% in the sliding distance of the tiles and 80% reduction in the strain energy, leading to a higher safety factor and the structural failure delay compared to the plain ceramics

    Secretory Ameloblasts and Calcium Distribution During Normal and Experimentally Altered Mineralization

    Get PDF
    The distribution of calcium in relation to secretory ameloblasts of the rat incisor was studied. An experimental model system in which enamel mineralization was temporarily inhibited by injecting sodium fluoride and cobalt chloride was used. Potassium pyroantimonate (PPA) cytochemistry, electron energy loss spectroscopy (EELS), and energy dispersive X-ray spectrometry (EDS) were used to clarify the role of the ameloblast in controlling calcium distribution during normal and experimentally altered enamel mineralization. Secretory ameloblasts chemically-preserved in glutaraldehyde either with or without PPA were analyzed for calcium; those preserved with PPA showed higher concentrations of calcium than did those preserved with glutaraldehyde only. Freeze-dried control and experimental tissues showed an increasing gradient of calcium from stratum intermedium cells to the distal ends of the ameloblasts. Calcium levels were reduced near the distal ends of the cells following fluoride and cobalt injections, while magnesium levels were increased markedly in the same region. This multi-method approach showed correlated calcium localization in specific regions of this cell in relation to changes in function. The study thus provides additional evidence for active involvement of the ameloblasts in enamel mineralization

    Calcium Levels in Ruffle-Ended and Smooth-Ended Maturation Ameloblasts

    Get PDF
    Scanning electron microscopy was used to distinguish the topographical characteristics of two maturation ameloblast types in freeze-dried blocks of enamel organ tissue. This distinction was based primarily upon the configuration of the distal ends of the ameloblasts and the presence or absence of wide intercellular spaces. Energy dispersive x-ray spectrometry was applied to compare calcium levels in various regions of tissue identified as constituting either ruffle-ended or smooth ended ameloblasts. Greater levels of calcium were found in the distal ends of the ruffle-ended cells than in their proximal ends. In addition, greater calcium levels were found in the distal ends of the ruffle-ended cells than the distal ends of the smooth-ended cells. The higher calcium levels in ruffle-ended cells correlates with the view that these cells are actively involved in control of movement of calcium to the enamel front

    Experimental characterization of a 400  Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m

    Get PDF
    We experimentally demonstrate and characterize the performance of a 400-Gbit/s orbital angular momentum (OAM) multiplexed free-space optical link over 120- meters on the roof of a building. Four OAM beams, each carrying a 100-Gbit/s QPSK channel are multiplexed and transmitted. We investigate the influence of channel impairments on the received power, inter-modal crosstalk among channels, and system power penalties. Without laser tracking and compensation systems, the measured received power and crosstalk among OAM channels fluctuate by 4.5 dB and 5 dB, respectively, over 180 seconds. For a beam displacement of 2 mm that corresponds to a pointing error less than 16.7 μrad, the link bit-error-rates are below the forward error correction threshold of 3.8×10-3 for all channels. Both experimental and simulation results show that power penalties increase rapidly when the displacement increases

    Amino Acid Features of P1B-ATPase Heavy Metal Transporters Enabling Small Numbers of Organisms to Cope with Heavy Metal Pollution

    Get PDF
    Phytoremediation refers to the use of plants for extraction and detoxification of pollutants, providing a new and powerful weapon against a polluted environment. In some plants, such as Thlaspi spp, heavy metal ATPases are involved in overall metal ion homeostasis and hyperaccumulation. P1B-ATPases pump a wide range of cations, especially heavy metals, across membranes against their electrochemical gradients. Determination of the protein characteristics of P1B-ATPases in hyperaccumulator plants provides a new opportuntity for engineering of phytoremediating plants. In this study, using diverse weighting and modeling approaches, 2644 protein characteristics of primary, secondary, and tertiary structures of P1B-ATPases in hyperaccumulator and nonhyperaccumulator plants were extracted and compared to identify differences between proteins in hyperaccumulator and nonhyperaccumulator pumps. Although the protein characteristics were variable in their weighting, tree and rule induction models; glycine count, frequency of glutamine-valine, and valine-phenylalanine count were the most important attributes highlighted by 10, five, and four models, respectively. In addition, a precise model was built to discriminate P1B-ATPases in different organisms based on their structural protein features. Moreover, reliable models for prediction of the hyperaccumulating activity of unknown P1B-ATPase pumps were developed. Uncovering important structural features of hyperaccumulator pumps in this study has provided the knowledge required for future modification and engineering of these pumps by techniques such as site-directed mutagenesis

    Effect of Fluoride and Cobalt on Forming Enamel: Scanning Electron Microscope and X-Ray Microanalysis Study

    Get PDF
    The forming surfaces of enamel of rat incisors were examined by scanning electron microscope one hour after injection of either 5 mg/100 g body weight of sodium fluoride or 12 mg/100 g body weight of cobalt chloride. The cell debris from the surfaces of the separated incisors was either gently wiped off with soft facial tissues or chemically removed by treating with NaOH, NaOCl or trypsin. Best results to remove cell debris were obtained from 0.25% trypsin treatment. SEM studies revealed that the surface of the normal secretory enamel was characteristic in appearance with well-developed smooth prism outlines. In fluoride specimens the prism outlines were feathery in appearance, laced with protruding spine-shaped clusters of mineral crystals. In the case of cobalt treatment, prism outlines were less uniform and in some areas they were incomplete. The calcium concentration of surface enamel was significantly lower in the cobalt-treated specimens than those from control and fluoride-treated animals. The Ca:Mg ratio was also lower in cobalt-treated specimens as compared to control and fluoride-treated ones

    Risk factors of regression and undercorrection in photorefractive keratectomy: A case-control study

    Get PDF
    �AIM: To determine risk factors of regression and undercorrection following photorefractive keratectomy (PRK) in myopia or myopic astigmatism. �METHODS: A case-control study was designed in which eyes with an indication for re-treatment (RT) were defined as cases; primary criteria for RT indication, as assessed at least 9mo postoperatively, included an uncorrected distance visual acuity (UDVA) of 20/30 or worse and a stable refraction for more than 3mo. Additional considerations included optical quality symptoms and significant higher order aberrations (HOAs). Controls were chosen from the same cohort of operated eyes which had complete post-operative follow up data beyond 9mo and did not need RT. The cohort included patients who had undergone PRK by the Tissue-Saving (TS) ablation profile of Technolas 217z100 excimer laser (Bausch & Lomb, Rochester, NY, USA). Mitomycin C had been used in all of the primary procedures. �RESULTS: We had 70 case eyes and 158 control eyes, and they were comparable in terms of age, sex and follow-up time (P values:0.58, 1.00 and 0.89, respectively). Pre-operative spherical equivalent of more than -5.00 diopter (D), intended optical zone (OZ) diameter of less than 6.00 mm and ocular fixation instability during laser ablation were associated with RT indications (all P values -5.00 D), smaller OZ (<6.00 mm) and unstable fixation during laser ablation of PRK for myopia and myopic astigmatism were found to be strong predictors of undercorrection and regression. © 2015 International Journal of Ophthalmology (c/o Editorial Office). All Rights Reserved

    Engineering design of the EURISOL multi-MW spallation target

    Get PDF
    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order of 1014 n/cm2/s, is evaluated, together with the production of radionuclides in the actinide targets, showing that the targeted 1015 fissions/s can be achieved. Some of the greatest challenges in the design of high power spallation sources are the high power densities, entailing large structural stresses, and the heat removal, requiring detailed thermo-hydraulic calculations. The use of a thin martensitic steel beam-window and a well-controlled mercury flow has been shown to reduce the von-Misses stress in the former below the 200 MPa limit, with reasonable maximum flow rates of ~6 m/s. Alternatively, a windowless target configuration has been proposed, based on a liquid mercury transverse film. With this design, higher power densities and fission rates may be achieved, avoiding the technical difficulties related to the beam window. Experimentally, several tests have been performed at IPUL (Riga, Latvia) in order to study the stability of the liquid metal flow and validate the mercury loop design
    corecore