446 research outputs found

    Role of the sympathicoadrenal system in the hemodynamic response to exercise in dogs

    Get PDF
    Twelve dogs that ran well on a motor-driven treadmill were vagotomized and sympathectomized from TI-TT plus LB-L6 and subjected to either unilateral adrenalectomy and contralateral adrenal demedullation (W-A) or denervation of cranial mesenteric and common hepatic arteries (SN-MH). After recovery, cardiac output determinations (direct Fick) and continuous recording of mean aortic blood pressure, heart rate, and oxygen consumption were made at rest and during exercise at 7.5 km/hr- 10% gradient Heart rate increased from 113 to 126 beats/min in the medulloadrenalectomized dogs and from 98 to 147 beats/min in dogs with hepatomesenteric denervation. Mean blood pressure did not vary substantially with exercise in either series of animals, averaging at rest 89 mm Hg in dogs with adrenal medullectomy and 128 mm Hg in dogs with intact adrenals. The resting cardiac index was similar in both groups (2.61 liters/min per m2) and increased about 200 y0 during exercise in medulloadrenalectomized animals as compared with 330y0 in dogs with hepatomesenteric denervation. During exercise, energy cost was essentially similar although peripheral resistance decreased about 75y0 in both groups.copiaFil: Ashkar, E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Stevens, J. J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Houssay, Bernardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinapapelTIBYMEUnidad documental simpl

    Genital HSV-2 Infection Induces Short-Term NK Cell Memory

    Get PDF
    NK cells are known as innate immune cells that lack immunological memory. Recently, it has been shown that NK cells remember encounters with chemical haptens that induce contact hypersensitivity and cytomegalovirus infection. Here, we show the existence of NK cell memory following HSV-2 infection. Stimulation with HSV-2 Ags led to higher IFNγ production in NK cells that were exposed 30 days previously to HSV-2, compared to NK cells from naïve mice. More importantly, this increased production of IFNγ in NK cells was independent of B- and T- lymphocytes and specific for the HSV-2 Ags. We also showed that previously exposed NK cells in a B- and T-lymphocyte free environment mediate protection against HSV-2 infection and they are necessary for the protection of mice against HSV-2 infection. Collectively, NK cells remember prior HSV-2 encounters independent of B- and T- lymphocytes leading to protection against HSV-2 mediated morbidity and mortality upon re-exposure

    AHR signaling is induced by infection with coronaviruses

    Get PDF
    Coronavirus infection in humans is usually associated to respiratory tract illnesses, ranging in severity from mild to life-threatening respiratory failure. The aryl hydrocarbon receptor (AHR) was recently identified as a host factor for Zika and dengue viruses; AHR antagonists boost antiviral immunity, decrease viral titers and ameliorate Zika-induced pathology in vivo. Here we report that AHR is activated by infection with different coronaviruses, potentially impacting antiviral immunity and lung epithelial cells. Indeed, the analysis of single-cell RNA-seq from lung tissue detected increased expression of AHR and AHR transcriptional targets, suggesting AHR signaling activation in SARS-CoV-2-infected epithelial cells from COVID-19 patients. Moreover, we detected an association between AHR expression and viral load in SARS-CoV-2 infected patients. Finally, we found that the pharmacological inhibition of AHR suppressed the replication in vitro of one of the causative agents of the common cold, HCoV-229E, and the causative agent of the COVID-19 pandemic, SARS-CoV-2. Taken together, these findings suggest that AHR activation is a common strategy used by coronaviruses to evade antiviral immunity and promote viral replication, which may also contribute to lung pathology. Future studies should further evaluate the potential of AHR as a target for host-directed antiviral therapy.Fil: Giovannoni, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Harvard Medical School; Estados UnidosFil: Li, Zhaorong. Harvard Medical School; Estados UnidosFil: Remes Lenicov, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Dávola, María E.. McMaster University; CanadáFil: Elizalde, Maria Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Paletta, Ana Luz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Ashkar, Ali A.. McMaster University; CanadáFil: Mossman, Karen L.. McMaster University; CanadáFil: Dugour, Andrea Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Figueroa, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Barquero, Andrea Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Laboratorio de Virología; ArgentinaFil: Ceballos, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Garcia, Cybele. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Quintana, Francisco Javier. Broad Institute; Estados Unidos. Harvard Medical School; Estados Unido

    Characterization of Barley Genotypes and Their Biochemical Responses against Leaf Rust (Puccinia hordei) Disease under Cold Arid Environment

    Get PDF
    Cereal rust is one of the most damaging diseases of small-grain cereals. The fungus Puccinia hordei causes leaf rust in barley and other small grain crops. Puccinia hordei causes serious yield losses in the cultivating areas where susceptible and late-maturing barley varieties are cultivated. Therefore, rust-resistant barley cultivar is highly demandable for sustainable small-grain crop production. Improving barley yields and quality is one of the major objectives of barley breeding programs in our country. Exotic and indigenous germplasm is one of the best sources of resistance to biotic stresses in barley particularly leaf rust caused by Puccinia hordei. Hence, the present investigation was carried out to identify the resistance sources to P. hordei and incorporate them into the breeding programs for higher barley yields under changing climatic scenarios. The study aimed to identify new resistant cultivars in barley and other small grain crops. In this study, 100 barley genotypes (Hordeum vulgare L.) were considered for screening susceptibility to P. hordei causing rust disease. Several biochemical responses were analyzed in P. hordei infected barley genotypes. However, the variable response was observed among the 100 barley genotypes while those were screened against leaf rust disease under high altitude cold arid conditions of Ladakh, India. The efficiency of the 100 barley genotypes were categorized into different classes including high resistance (4 genotypes)>resistance (14 genotypes)> moderately resistance (20 genotypes)> moderately susceptible (33 genotypes)>moderately susceptible to susceptible (19 genotypes)> and susceptible (10 genotypes) based on plant response to P. hordei. Among the total genotypes, SHEIKH/KP-706, SHEIKH-B1, SHEIKH-636, and IC-062190 showed high resistance (8.07-8.63) as per the international leaf rust scale, while EC-667381, EC-667390, EC-667392, EC667396, EC-667417, Jyoti, EC-667434, EC-667442, EC-667445, and EC-667446 were found as susceptible (3.13-3.97) to P. hordei. The highly resistant genotypes accumulated a high level of phenols and flavonoids and cooperated with susceptible and other rest of the genotypes in response to P. hordei rust. The efficiency of plant immune response and or fitness to P. hordei was correlated to the disease susceptibility index of particular genotypes. This provides a new insight and the mechanistic basis of genotype-specific rust disease susceptibility against P. hordei. A large number of genotype-based studies at the field level could be useful to plant breeders and farmers for improving rust resistance in barley and other small-grain cereals

    Interleukin-15 Treatment Induces Weight Loss Independent of Lymphocytes

    Get PDF
    Obesity is a chronic inflammatory condition characterized by activation and infiltration of proinflammatory immune cells and a dysregulated production of proinflammatory cytokines. While known as a key regulator of immune natural killer (NK) cell function and development, we have recently demonstrated that reduced expression of the cytokine Interleukin-15 (IL-15) is closely linked with increased body weight and adiposity in mice and humans. Previously, we and others have shown that obese individuals have lower circulating levels of IL-15 and NK cells. Lean IL-15 overexpressing (IL-15 tg) mice had an accumulation in adipose NK cells compared to wildtype and NK cell deficient obese IL-15−/− mice. Since IL-15 induces weight loss in IL-15−/− and diet induced obese mice and has effects on various lymphocytes, the aim of this paper was to determine if lymphocytes, particularly NK cells, play a role in IL-15 mediated weight loss. Acute IL-15 treatment resulted in an increased accumulation of NK, NKT, and CD3+ T cells in adipose tissue of B6 mice. Mice depleted of NK and NKT cells had similar weight loss comparable to controls treated with IL-15. Finally, IL-15 treatment induces significant weight loss in lymphocyte deficient RAG2−/−γc−/− mice independent of food intake. Fat pad cross-sections show decreased pad size with cytokine treatment is due to adipocyte shrinkage. These results clearly suggest that IL-15 mediates weight loss independent of lymphocytes

    Polymorphisms in Toll-like receptor genes influence antibody responses to cytomegalovirus glycoprotein B vaccine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Congenital Cytomegalovirus (CMV) infection is an important medical problem that has yet no current solution. A clinical trial of CMV glycoprotein B (gB) vaccine in young women showed promising efficacy. Improved understanding of the basis for prevention of CMV infection is essential for developing improved vaccines.</p> <p>Results</p> <p>We genotyped 142 women previously vaccinated with three doses of CMV gB for single nucleotide polymorphisms (SNPs) in TLR 1-4, 6, 7, 9, and 10, and their associated intracellular signaling genes. SNPs in the platelet-derived growth factor receptor (PDGFRA) and integrins were also selected based on their role in binding gB. Specific SNPs in TLR7 and IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) were associated with antibody responses to gB vaccine. Homozygous carriers of the minor allele at four SNPs in TLR7 showed higher vaccination-induced antibody responses to gB compared to heterozygotes or homozygotes for the common allele. SNP rs1953090 in IKBKE was associated with changes in antibody level from second to third dose of vaccine; homozygotes for the minor allele exhibited lower antibody responses while homozygotes for the major allele showed increased responses over time.</p> <p>Conclusions</p> <p>These data contribute to our understanding of the immunogenetic mechanisms underlying variations in the immune response to CMV vaccine.</p

    Resveratrol Prevents Endothelial Cells Injury in High-Dose Interleukin-2 Therapy against Melanoma

    Get PDF
    Immunotherapy with high-dose interleukin-2 (HDIL-2) is an effective treatment for patients with metastatic melanoma and renal cell carcinoma. However, it is accompanied by severe toxicity involving endothelial cell injury and induction of vascular leak syndrome (VLS). In this study, we found that resveratrol, a plant polyphenol with anti-inflammatory and anti-cancer properties, was able to prevent the endothelial cell injury and inhibit the development of VLS while improving the efficacy of HDIL-2 therapy in the killing of metastasized melanoma. Specifically, C57BL/6 mice were injected with B16F10 cells followed by resveratrol by gavage the next day and continued treatment with resveratrol once a day. On day 9, mice received HDIL-2. On day 12, mice were evaluated for VLS and tumor metastasis. We found that resveratrol significantly inhibited the development of VLS in lung and liver by protecting endothelial cell integrity and preventing endothelial cells from undergoing apoptosis. The metastasis and growth of the tumor in lung were significantly inhibited by HDIL-2 and HDIL-2 + resveratrol treatment. Notably, HDIL-2 + resveratrol co-treatment was more effective in inhibiting tumor metastasis and growth than HDIL-2 treatment alone. We also analyzed the immune status of Gr-1+CD11b+ myeloid-derived suppressor cells (MDSC) and FoxP3+CD4+ regulatory T cells (Treg). We found that resveratrol induced expansion and suppressive function of MDSC which inhibited the development of VLS after adoptive transfer. However, resveratrol suppressed the HDIL-2-induced expansion of Treg cells. We also found that resveratrol enhanced the susceptibility of melanoma to the cytotoxicity of IL-2-activated killer cells, and induced the expression of the tumor suppressor gene FoxO1. Our results suggested the potential use of resveratrol in HDIL-2 treatment against melanoma. We also demonstrated, for the first time, that MDSC is the dominant suppressor cell than regulatory T cell in the development of VLS

    Targeting deficiencies in the TLR5 mediated vaginal response to treat female recurrent urinary tract infection

    Get PDF
    Abstract The identification of the host defence peptides as target effectors in the innate defence of the uro-genital tract creates new translational possibilities for immunomodulatory therapies, specifically vaginal therapies to treat women suffering from rUTI, particularly those carrying the TLR5_C1174T SNP. Urinary tract infections (UTIs) are a microbial disease reported worldwide. Women are particularly susceptible with many suffering debilitating recurrent (r) infections. Treatment is by antibiotics, but such therapy is linked to antibiotic resistance and re-infection. This study explored the innate protective mechanisms of the urogenital tract with the aim of boosting such defences therapeutically. Modelling UTIs in vitro, human vaginal and bladder epithelial cells were challenged with uropathogenic Escherichia coli (CFT073) and microbial PAMPs including flagellin, LPS and peptidoglycan. Flagellin functioning via the TLR5/NFκB pathway was identified as the key UPEC virulence factor causing a significant increase (P < 0.05) in the production of the host-defence peptide (HDP), BD2. BD2-depleted urine samples from bladder infected mice supported increased UPEC growth, strengthening the significance of the HDPs in protecting the urogenital tissues from infection. Clinically, vaginal-douche BD2 concentrations were reduced (p < 0.05) in women suffering rUTIs, compared to age-matched healthy controls with concentrations further decreased (p < 0.05) in a TLR5392Stop SNP rUTI subgroup. Topical vaginal estrogen treatment increased (p < 0.001) BD2 concentrations in all women, including those carrying the SNP. These data identify therapeutic and antibiotic sparing roles for vaginal immunomodulatory agents that specifically target HDP induction, facilitate bacterial killing and disrupt the UPEC infection cycle

    Search for dark matter annihilation signals in the H.E.S.S. Inner galaxy survey

    Get PDF
    The central region of the Milky Way is one of the foremost locations to look for dark matter (DM) signatures. We report the first results on a search for DM particle annihilation signals using new observations from an unprecedented γ-ray survey of the Galactic Center (GC) region, i.e., the Inner Galaxy Survey, at very high energies (≳100  GeV) performed with the H.E.S.S. array of five ground-based Cherenkov telescopes. No significant γ-ray excess is found in the search region of the 2014-2020 dataset and a profile likelihood ratio analysis is carried out to set exclusion limits on the annihilation cross section ⟨σv⟩. Assuming Einasto and Navarro-Frenk-White (NFW) DM density profiles at the GC, these constraints are the strongest obtained so far in the TeV DM mass range. For the Einasto profile, the constraints reach ⟨σv⟩ values of 3.7×10^{-26}  cm^{3} s^{-1} for 1.5 TeV DM mass in the W^{+}W^{-} annihilation channel, and 1.2×10^{-26}  cm^{3} s^{-1} for 0.7 TeV DM mass in the τ^{+}τ^{-} annihilation channel. With the H.E.S.S. Inner Galaxy Survey, ground-based γ-ray observations thus probe ⟨σv⟩ values expected from thermal-relic annihilating TeV DM particles
    corecore