998 research outputs found

    28th Infantry Regiment, 8th Infantry Division

    Get PDF
    From History of the 28th Regiment, page 22: On July I, 1944, a convoy of four troop ships and twelve motor transports steamed out of Belfast Harbor carrying the 8th Division to the continent of Europe. On July 4, twenty-eight days after D-Day of the Allied invasion of Normandy, the Regiment began debarking at Utah Beach on the Cherbourg peninsula. Next day it had assembled in the vicinity of Montbourg where final preparations for battle were completed. Allied invasion armies at this time held only a few square miles of the territory of France. The city of Cherbourg had recently been taken, and the Germans had been driven from the northern tip of the peninsula to a point just north of La Haye du Puits. From there the enemy line extended through Carentan and St. Lo eastward to Caen and Orne River estuary. German resistance in most sectors was heavy even against already achieved air superiority. On July 6 the Regiment moved to an assembly area near the town of St. Sauveur Le Vicomte, the following morning orders were received to take over a section of the line, one kilometer south of La Haye du Puits. The plan for the Division, was to attack to the south, passing through the 82nd Airborne Division, taking over the center of the Corps front. The main effort of the drive was to be made in this sector.https://digicom.bpl.lib.me.us/ww_reg_his/1121/thumbnail.jp

    Move out, verify: the combat story of the 743rd Tank Battalion

    Get PDF
    A Battalion truck was driven hundreds of miles through Germany to locate and haul a linotype machine so that type could be set for this book. This is just one of the sometimes fantastic difficulties overcome during the manufacture of these pages in the bomb-devastated city of Frankfurt-on-Main in July 1945. That the book did get printed at all is astonishing to its author. 1st Lt. John D. Hess, aided by German-speaking Tech Sergeant Frank Gartner, looked after the considerable details of publication. The 21 chapter illustrations are by Pfc. Norman E. Hamilton. The writing is by Pfc. Wayne Robinson, who here wishes to acknowledge the great help given by so many, from tank commanders to cooks to personnel clerks, in getting the facts for this combat story.https://digicom.bpl.lib.me.us/ww_reg_his/1069/thumbnail.jp

    The story of the 310th infantry regiment, 78th infantry division in the war against Germany, 1942-1945

    Get PDF
    The 310th Infantry Regiment has fought in more than one war. This history is primarily an account of the present 310th Infantry Regiment in World War II, but there is a story to tell of an earlier 310th Regiment which carried the same Regimental Colors into battle against the German enemy in World War I.https://digicom.bpl.lib.me.us/ww_reg_his/1038/thumbnail.jp

    The Long haul: the story of the 497th Bomber Group (VH)

    Get PDF
    From the Foreword, written by Arnold T. Johnson, Col. A.C., Group Commander: This book has been prepared and published in the belief that every member of the 497th Bomb Group will want to have its glorious combat history preserved and that every member will desire to have a copy. It is hoped, as you browse through this book in future years, it will serve to remind you of your many friends and team-mates with whom you served. It is hoped, as you glance through the Roll of Honor , it will keep alive your memory of our brave friends who did not return, and of the great sacrifices a war exacts. Because these gallant men made the supreme sacrifice, we are living to enjoy the Four Freedoms for which this war was fought. As I think back to those days on Saipan, where we lived, worked and fought together, I think of the smoothest functioning team it has ever been my pleasure to serve with. I think of every man performing his duties with loyalty and cooperation and to the best of his ability. Men in the kitchens, on the maintenance line, in the offices, on board the airplanes; each seemed to take pride in making every mission a little better than the last; each knew that his efforts brought the war to a close just a little sooner. Every-man who fought with the 497th Bomb Group deserves the highest praise and commendation. To each of you I extend my sincere appreciation and congratulations for the job you did so well. Preparation of this book did not begin until five months after the group had returned to the States. The group was then stationed at MacDill Field, Tampa, Florida. Very few of the enlisted personnel had returned, many of the officers had returned but there were also many new ones assigned. Many staff positions were filled by personnel who were new to the group. The records of the group, including the squadron records, arrived home in a thoroughly disorganized fashion and a considerable amount of the records were never found. These facts together with the difficulties in obtaining the correct status of missing personnel and present locations of all former personnel have made the task of preparing this book very difficult. It is desired to acknowledge that this book will contain many imperfections and perhaps many errors. The errors are regrettable but everything has been done to avoid them, insofar as has been possible. In spite of this, it is believed that this book is well worth while and will be thoroughly enjoyable to all former personnel of the group.https://digicom.bpl.lib.me.us/ww_reg_his/1109/thumbnail.jp

    Explicit wave overtopping formula for mound breakwaters with crown walls using CLASH neural network-derived data

    Full text link
    Based on the Crest Level Assessment of Coastal Structures (CLASH) Neural Network Overtopping prediction method, a new 16-parameter overtopping estimator (Q6) was developed for conventional mound breakwaters with crown walls, both with and without toe berms. Q6 was built up using the overtopping estimations given by the CLASH Neural Network and checked using the CLASH database. Q6 was compared to other conventional overtopping formulas, and the Q6 obtained the lowest prediction errors. Q6 provides overtopping predictions similar to the CLASH Neural Network for conventional mound breakwaters but using only six explanatory dimensionless variables (Rc=Hm0; Ir; Rc=h;Gc=Hm0; Ac=Rc, and a toe berm variable based on Rc=h) and two reduction factors (g f and g b ). Q6 describes explicit relationships between input variables and overtopping discharge, and hence it facilitates use in engineering design to identify costeffective solutions and to quantify the influence of variations in wave and structural parameters.The authors are grateful for financial support from the Spanish Ministerio de Economia y Competitividad (Grant BIA2012-33967). The first author was funded through the FPU program (Formacion del Profesorado Universitario, Grant AP2010-4366) by the Spanish Ministerio de Educacion, Cultura y Deporte. The authors also thank Debra Westall for revising the manuscript.Molines, J.; Medina, JR. (2016). Explicit wave overtopping formula for mound breakwaters with crown walls using CLASH neural network-derived data. Journal of Waterway Port Coastal and Ocean Engineering. 142(3). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000322S142

    Angle of Incidence Effects on Far-Field Positive and Negative Phase Blast Parameters

    Get PDF
    The blast overpressure acting on a rigid target is known to vary between the normally reflected overpressure and the incident overpressure as a function of the angle between the target and the direction of travel of the blast wave. Literature guidance for determining the exact effects of angle of incidence are unclear, particularly when considering the negative phase. This paper presents the results from a series of well controlled experiments where pressure transducers are used to record the pressure-time history acting on the face of a large, rigid target at various angles of incidence for varying sizes of hemispherical PE4 charge and stand-off distances. The test data demonstrated remarkable repeatability, and excellent agreement with semi-empirical predictions for normally reflected overpressures. The oblique results show that peak overpressure, impulse and duration are highly dependent on angle of incidence for the positive phase, and are invariant of angle of incidence for the negative phase

    Overcoming failure in infrastructure risk governance implementation: large dams journey

    Full text link
    [EN] There is ample recognition of the risk inherent in our very existence and modes of social organization, with a reasonable expectation that implementing risk governance will result in enhanced resilience as a society. Despite this, risk governance is not a mainstream approach in the infrastructure sector, regardless of the increasing number of peer-reviewed published conceptualizations, mature procedures to support its application, or public calls to cope with systemic risks in our modern societies. This paper aims to offer a different view on the issue of risk governance, with focus in the analysis of the root causes of its relatively low degree of implementation in the infrastructure sector. We later analyze the impact of such essential causes, which we have grouped and labeled as the ontology, the concerns, the anathemas, and the forgotten, in the specific field of large dams. Finally, we describe the journey toward risk governance in the specific field of large dams, thus supporting the ultimate objective of this paper to facilitate an evidence-based approach to successful risk governance implementation within and outside the dam sector.This work was supported by Spanish Ministry of Economy and Competitiveness (Ministerio de Economía y Competitividad (España) [grant number BIA2013-48157-C2-1-R].Escuder Bueno, I.; Halpin, E. (2016). Overcoming failure in infrastructure risk governance implementation: large dams journey. Journal of Risk Research. https://doi.org/10.1080/13669877.2016.1215345SAbrahamsen, E. B., & Aven, T. (2012). Why risk acceptance criteria need to be defined by the authorities and not the industry? Reliability Engineering & System Safety, 105, 47-50. doi:10.1016/j.ress.2011.11.004Ardiles, L. D. Sanz, P. Moreno, E. Jenaro, J. Fleitz, and I. Escuder. 2011. “Risk Assessment and Management of 26 Dams Operated by the Duero River Authority in Spain”.Dam Engineering. 21 (4): 313–328. Willmington Publishing. ISSN 0958-9341.Van Asselt, M. B. A., & Renn, O. (2011). Risk governance. Journal of Risk Research, 14(4), 431-449. doi:10.1080/13669877.2011.553730Van Asselt, M., & Vos, E. (2008). Wrestling with uncertain risks: EU regulation of GMOs and the uncertainty paradox. Journal of Risk Research, 11(1), 281-300. doi:10.1080/13669870801990806Aven, T. (2010). Misconceptions of Risk. doi:10.1002/9780470686539Aven, T. (2012). Foundational Issues in Risk Assessment and Risk Management. Risk Analysis, 32(10), 1647-1656. doi:10.1111/j.1539-6924.2012.01798.xAven, T. (2012). The risk concept—historical and recent development trends. Reliability Engineering & System Safety, 99, 33-44. doi:10.1016/j.ress.2011.11.006Aven, T., & Renn, O. (2010). Response to Professor Eugene Rosa’s viewpoint to our paper. Journal of Risk Research, 13(3), 255-259. doi:10.1080/13669870903484369Aven, T., & Renn, O. (2010). Risk Management and Governance. doi:10.1007/978-3-642-13926-0Baecher, G. B., Paté, M. E., & De Neufville, R. (1980). Risk of dam failure in benefit-cost analysis. Water Resources Research, 16(3), 449-456. doi:10.1029/wr016i003p00449Black, J., & Baldwin, R. (2012). When risk-based regulation aims low: Approaches and challenges. Regulation & Governance, 6(1), 2-22. doi:10.1111/j.1748-5991.2011.01124.xBoholm, Å., Corvellec, H., & Karlsson, M. (2012). The practice of risk governance: lessons from the field. Journal of Risk Research, 15(1), 1-20. doi:10.1080/13669877.2011.587886Cox, L. A. (2009). Risk Analysis of Complex and Uncertain Systems. International Series in Operations Research & Management Science. doi:10.1007/978-0-387-89014-2Davis, D., Faber, B. A., & Stedinger, J. R. (2008). USACE Experience in Implementing Risk Analysis for Flood Damage Reduction Projects. Journal of Contemporary Water Research & Education, 140(1), 3-14. doi:10.1111/j.1936-704x.2008.00023.xDe Vries, G., Verhoeven, I., & Boeckhout, M. (2011). Taming uncertainty: the WRR approach to risk governance. Journal of Risk Research, 14(4), 485-499. doi:10.1080/13669877.2011.553728Escuder-Bueno, I., Matheu, E., T. Castillo-Rodríguez, J., & T. Castillo-Rodríguez, J. (Eds.). (2011). Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management. doi:10.1201/b11588Ezell, B. C., Bennett, S. P., von Winterfeldt, D., Sokolowski, J., & Collins, A. J. (2010). Probabilistic Risk Analysis and Terrorism Risk. Risk Analysis, 30(4), 575-589. doi:10.1111/j.1539-6924.2010.01401.xForrester, I., & Hanekamp1, J. C. (2006). Precaution, Science and Jurisprudence: a Test Case. Journal of Risk Research, 9(4), 297-311. doi:10.1080/13669870500042974Funabashi, Y., & Kitazawa, K. (2012). Fukushima in review: A complex disaster, a disastrous response. Bulletin of the Atomic Scientists, 68(2), 9-21. doi:10.1177/0096340212440359Hartford, D. N. D., & Baecher, G. B. (2004). Risk and uncertainty in dam safety. doi:10.1680/rauids.32705IRGC (International Risk Governance Council) 2005.Risk Governance: Towards an Integrative Approach, White Paper No. 1, O. Renn with an Annex by P. Graham. Geneva: International Risk Governance Council.Krause, P., Fox, J., Judson, P., & Patel, M. (1998). Qualitative risk assessment fulfils a need. Lecture Notes in Computer Science, 138-156. doi:10.1007/3-540-49426-x_7Kröger, W. (2008). Critical infrastructures at risk: A need for a new conceptual approach and extended analytical tools. Reliability Engineering & System Safety, 93(12), 1781-1787. doi:10.1016/j.ress.2008.03.005Lofstedt, R. E. (2010). Risk communication guidelines for Europe: a modest proposition. Journal of Risk Research, 13(1), 87-109. doi:10.1080/13669870903126176(2008). Journal of Contemporary Water Research & Education, 140(1). doi:10.1111/jcwr.2008.140.issue-1Park, J., Seager, T. P., Rao, P. S. C., Convertino, M., & Linkov, I. (2012). Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems. Risk Analysis, 33(3), 356-367. doi:10.1111/j.1539-6924.2012.01885.xRenn, O., & Walker, K. D. (Eds.). (2008). Global Risk Governance. International Risk Governance Council Bookseries. doi:10.1007/978-1-4020-6799-0Renn, O., Klinke, A., & van Asselt, M. (2011). Coping with Complexity, Uncertainty and Ambiguity in Risk Governance: A Synthesis. AMBIO, 40(2), 231-246. doi:10.1007/s13280-010-0134-0Rosa, E. A. (2010). The logical status of risk – to burnish or to dull. Journal of Risk Research, 13(3), 239-253. doi:10.1080/13669870903484351Slovic, P. (1987). Perception of risk. Science, 236(4799), 280-285. doi:10.1126/science.3563507Vlek, C. (2010). Judicious management of uncertain risks: I. Developments and criticisms of risk analysis and precautionary reasoning. Journal of Risk Research, 13(4), 517-543. doi:10.1080/13669871003629887Zhao, X., Hwang, B.-G., & Low, S. P. (2015). Enterprise Risk Management in International Construction Operations. doi:10.1007/978-981-287-549-

    Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement

    Full text link
    In many civil and geotechnical applications it is of interest to monitor the strain deep inside the structure; consequently, it is necessary to embed the sensors into the structure's material. Construction and geotechnical materials, such as concrete and soil, can be affected by local defects, e.g. cracks, air pockets and inclusions. To monitor these materials at a structural level it is necessary to use long-gauge sensors. As the sensor has to be embedded in the host material, its presence causes perturbation of the strain field and influences the accuracy of the strain measurement. The aim of this research was to identify the critical parameters that influence the accuracy of the strain measurement, to study how these parameters affect the accuracy, and to give recommendations for sensor users. The study was based on finite element analysis and all involved materials were assumed to have the MöhrCoulomb elastic, perfectly plastic behavior. A suitability of the numerical model for the analysis was verified using the experimental results of two cases reported in the literature and one on-site application. The study revealed that the most important parameters that influence the accuracy of the strain measurement are the goodness of interaction (strain transfer) between the host material and the anchor pieces of the sensor, the ratio between equivalent Young's modulus of the sensor and the Young's modulus of the host material, the radius of the anchor piece and the gauge length. The numerical model and parametric study are presented in detail along with practical recommendations. © 2012 IOP Publishing Ltd.The authors would like to thank the Spanish Ministry of Education, with support received under the National Program for Mobility of Researchers (O.M. EDU/1456/2010, ref. PR2010-0293) which enabled the joint work that made this study possible. The Streicker Bridge project was realized with help of Turner Construction Co., HNTB, AG Construction Corp., Vollers Excavating & Constr., SMARTEC SA, Micron Optics, Princeton Facilities, and staff and students of CEE department of Princeton University.Calderón García, PA.; Glisic, B. (2012). Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement. Measurement Science and Technology. (23):1-15. https://doi.org/10.1088/0957-0233/23/6/065604S11523Glišić, B., & Inaudi, D. (2007). Fibre Optic Methods for Structural Health Monitoring. doi:10.1002/9780470517819Ansari, F. (2007). Practical Implementation of Optical Fiber Sensors in Civil Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 18(8), 879-889. doi:10.1177/1045389x06075760Li, H.-N., Zhou, G.-D., Ren, L., & Li, D.-S. (2009). Strain Transfer Coefficient Analyses for Embedded Fiber Bragg Grating Sensors in Different Host Materials. Journal of Engineering Mechanics, 135(12), 1343-1353. doi:10.1061/(asce)0733-9399(2009)135:12(1343)Torres, B., Payá-Zaforteza, I., Calderón, P. A., & Adam, J. M. (2011). Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring. Engineering Structures, 33(2), 539-548. doi:10.1016/j.engstruct.2010.11.012Kesavan, K., Ravisankar, K., Parivallal, S., Sreeshylam, P., & Sridhar, S. (2010). Experimental studies on fiber optic sensors embedded in concrete. Measurement, 43(2), 157-163. doi:10.1016/j.measurement.2009.08.010Azenha, M., Faria, R., & Ferreira, D. (2009). Identification of early-age concrete temperatures and strains: Monitoring and numerical simulation. Cement and Concrete Composites, 31(6), 369-378. doi:10.1016/j.cemconcomp.2009.03.004Glisic, B. (2011). Influence of the gauge length on the accuracy of long-gauge sensors employed in monitoring of prismatic beams. Measurement Science and Technology, 22(3), 035206. doi:10.1088/0957-0233/22/3/035206Leng, J. S., Winter, D., Barnes, R. A., Mays, G. C., & Fernando, G. F. (2006). Structural health monitoring of concrete cylinders using protected fibre optic sensors. Smart Materials and Structures, 15(2), 302-308. doi:10.1088/0964-1726/15/2/009Calderón, P. A., Adam, J. M., Ivorra, S., Pallarés, F. J., & Giménez, E. (2009). Design strength of axially loaded RC columns strengthened by steel caging. Materials & Design, 30(10), 4069-4080. doi:10.1016/j.matdes.2009.05.014Adam, J. M., Ivorra, S., Pallarés, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel caging. Finite element modelling. Construction and Building Materials, 23(6), 2265-2276. doi:10.1016/j.conbuildmat.2008.11.014Adam, J. M., Ivorra, S., Pallares, F. J., Jiménez, E., & Calderón, P. A. (2008). Column–joint assembly in RC columns strengthened by steel caging. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 161(6), 337-348. doi:10.1680/stbu.2008.161.6.337Adam, J. M., Ivorra, S., Pallares, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel cages. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 162(3), 199-208. doi:10.1680/stbu.2009.162.3.199Johansson, M., & Gylltoft, K. (2001). Structural behavior of slender circular steel-concrete composite columns under various means of load application. Steel and Composite Structures, 1(4), 393-410. doi:10.12989/scs.2001.1.4.393Johansson, M., & Gylltoft, K. (2002). Mechanical Behavior of Circular Steel–Concrete Composite Stub Columns. Journal of Structural Engineering, 128(8), 1073-1081. doi:10.1061/(asce)0733-9445(2002)128:8(1073
    • …
    corecore