169 research outputs found

    A Regenerable Biosensing Platform for Bacterial Toxins

    Get PDF
    Waterborne diarrheal diseases such as travelers’ diarrhea and cholera remain a threat to public health in many countries. Rapid diagnosis of an infectious disease is critical in preventing the escalation of a disease outbreak into an epidemic. Many of the diagnostic tools for infectious diseases employed today are time-consuming and require specialized laboratory settings and trained personnel. There is hence a pressing need for fit-for-purpose point-of-care diagnostic tools with emphasis in sensitivity, specificity, portability, and low cost. We report work toward thermally reversible biosensors for detection of the carbohydrate-binding domain of the Escherichia coli heat-labile enterotoxin (LTB), a toxin produced by enterotoxigenic E. coli strains, which causes travelers’ diarrhea. The biosensing platform is a hybrid of two materials, combining the optical properties of porous silicon (pSi) interferometric transducers and a thermoresponsive multivalent glycopolymer, to enable recognition of LTB. Analytical performance of our biosensors allows us to detect, using a label-free format, sub-micromolar concentrations of LTB in solution as low as 0.135 ÎŒM. Furthermore, our platform shows a temperature-mediated “catch-and-release” behavior, an exciting feature with potential for selective protein capture, multiple readouts, and regeneration of the sensor over consecutive cycles of use

    Clinical and pathological outcomes of induction chemotherapy before neoadjuvant radiotherapy in locally‐advanced rectal cancer

    Full text link
    Background and ObjectivesIn North America, preoperative combination chemoradiation is the most commonly recommended and utilized approach to locally advanced rectal cancer. There is increasing interest in the use of induction chemotherapy (IC) before radiation and surgery in locally advanced rectal cancer. How widely IC is being used and whether it improves pathologic and oncologic outcomes is unknown.MethodsWe evaluated clinical stage 2 or 3 rectal cancer patients in the National Cancer Database between 2006 and 2015. We identified predictors of use of IC with multivariable logistic regression and compared survival between groups using Cox proportional hazards regression.ResultsAmong 36 268 patients, IC use increased significantly over time from 5.5% in 2006 to 15.9% in 2015 (P < 0.001). Treatment at a hospital with a high IC rate was an independent predictor of receipt of IC. IC and traditional therapy yielded similar pathologic complete response rates (32.2% vs 30.5%, P = 0.2) and similar 5‐year survival (82.4% vs 81.4%, 0.71).ConclusionsUse of IC for locally advanced rectal cancer has increased significantly. The choice of IC seems to be driven more by institutional and regional practice patterns than clinical characteristics and is not associated with improved pathologic or oncologic outcomes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150518/1/jso25474.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150518/2/jso25474_am.pd

    Two Dot1 isoforms in Saccharomyces cerevisiae as a result of leaky scanning by the ribosome

    Get PDF
    Dot1 is a conserved histone methyltransferase that methylates histone H3 on lysine 79. We previously observed that in Saccharomyces cerevisiae, a single DOT1 gene encodes two Dot1 protein species. Here, we show that the relative abundance of the two isoforms changed under nutrient-limiting conditions. A mutagenesis approach showed that the two Dot1 isoforms are produced from two alternative translation start sites as a result of leaky scanning by the ribosome. The leaky scanning was not affected by the 5â€Č- or 3â€Č-untranslated regions of DOT1, indicating that translation initiation is determined by the DOT1 coding sequence. Construction of yeast strains expressing either one of the isoforms showed that both were sufficient for Dot1’s role in global H3K79 methylation and telomeric gene silencing. However, the absence of the long isoform of Dot1 altered the resistance of yeast cells to the chitin-binding drug Calcofluor White, suggesting that the two Dot1 isoforms have a differential function in cell wall biogenesis

    Sequence Diversity in the Dickeya fliC Gene: Phylogeny of the Dickeya Genus and TaqManÂź PCR for 'D. solani', New Biovar 3 Variant on Potato in Europe

    Get PDF
    Worldwide, Dickeya (formerly Erwinia chrysanthemi) is causing soft rot diseases on a large diversity of crops and ornamental plants. Strains affecting potato are mainly found in D. dadantii, D. dianthicola and D. zeae, which appear to have a marked geographical distribution. Furthermore, a few Dickeya isolates from potato are attributed to D. chrysanthemi and D. dieffenbachiae. In Europe, isolates of Erwinia chrysanthemi biovar 1 and biovar 7 from potato are now classified in D. dianthicola. However, in the past few years, a new Dickeya biovar 3 variant, tentatively named ‘Dickeya solani’, has emerged as a common major threat, in particular in seed potatoes. Sequences of a fliC gene fragment were used to generate a phylogeny of Dickeya reference strains from culture collections and with this reference backbone, to classify pectinolytic isolates, i.e. Dickeya spp. from potato and ornamental plants. The reference strains of the currently recognized Dickeya species and ‘D. solani’ were unambiguously delineated in the fliC phylogram. D. dadantii, D. dianthicola and ‘D. solani’ displayed unbranched clades, while D. chrysanthemi, D. zeae and D. dieffenbachiae branched into subclades and lineages. Moreover, Dickeya isolates from diagnostic samples, in particular biovar 3 isolates from greenhouse ornamentals, formed several new lineages. Most of these isolates were positioned between the clade of ‘D. solani’ and D. dadantii as transition variants. New lineages also appeared in D. dieffenbachiae and in D. zeae. The strains and isolates of D. dianthicola and ‘D. solani’ were differentiated by a fliC sequence useful for barcode identification. A fliC TaqMan¼real-time PCR was developed for ‘D. solani’ and the assay was provisionally evaluated in direct analysis of diagnostic potato samples. This molecular tool can support the efforts to control this particular phytopathogen in seed potato certification

    Specific Humoral Immunity versus Polyclonal B Cell Activation in Trypanosoma cruzi Infection of Susceptible and Resistant Mice

    Get PDF
    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 10–12 million people in Latin America. Patent parasitemia develops during acute disease. During this phase, polyclonal B cell activation has been reported to generate high levels of serum antibody with low parasite specificity, and delayed protective humoral immunity, which is necessary to prevent the host from succumbing to infection. In this manuscript, data show that relatively resistant mice have improved parasite-specific humoral immunity and decreased polyclonal B cell activation compared to susceptible mice. Parasite-specific humoral immunity was associated with differential expansion of B cell subsets and T cells in the spleen, as well as with increased Th1 and decreased Th2 cytokine production. These data suggest that host susceptibility/genetic biases impact the development of humoral responses to infection. Th2 cytokines are generally associated with improved antibody responses. In the context of T. cruzi infection of susceptible mice, Th2 cytokines were associated with increased total antibody production concomitant with delayed pathogen-specific humoral immunity. This study highlights the need to consider the effect of host biases when investigating humoral immunity to any pathogen that has reported polyclonal B cell activation during infection

    GM and KM immunoglobulin allotypes in the Galician population: new insights into the peopling of the Iberian Peninsula

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current genetic structure of Iberian populations has presumably been affected by the complex orography of its territory, the different people and civilizations that settled there, its ancient and complex history, the diverse and persistent sociocultural patterns in its different regions, and also by the effects of the Iberian Peninsula representing a refugium area after the last glacial maximum. This paper presents the first data on <it>GM </it>and <it>KM </it>immunoglobulin allotypes in the Galician population and, thus, provides further insights into the extent of genetic diversity in populations settled in the geographic extremes of the Cantabrian region of northern Spain. Furthermore, the genetic relationships of Galicians with other European populations have been investigated.</p> <p>Results</p> <p>Galician population shows a genetic profile for <it>GM </it>haplotypes that is defined by the high presence of the European Mediterranean <it>GM</it>*<it>3 23 5* </it>haplotype, and the relatively high incidence of the African marker <it>GM*1,17 23' 5*</it>. Data based on comparisons between Galician and other Spanish populations (mainly from the north of the peninsula) reveal a poor correlation between geographic and genetic distances (<it>r </it>= 0.30, <it>P </it>= 0.105), a noticeable but variable genetic distances between Galician and Basque subpopulations, and a rather close genetic affinity between Galicia and Valencia, populations which are geographically separated by a long distance and have quite dissimilar cultures and histories. Interestingly, Galicia occupies a central position in the European genetic map, despite being geographically placed at one extreme of the European continent, while displaying a close genetic proximity to Portugal, a finding that is consistent with their shared histories over centuries.</p> <p>Conclusion</p> <p>These findings suggest that the population of Galicia is the result of a relatively balanced mixture of European populations or of the ancestral populations that gave rise to them. This would support the importance of the migratory movements that have taken place in Europe over the course of recent human history and their effects on the European genetic landscape.</p

    Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks: The GR@ACE project

    Get PDF
    Introduction: Large variability among Alzheimer's disease (AD) cases might impact genetic discoveries and complicate dissection of underlying biological pathways. Methods: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and its clinical endophenotypes, defined based on AD's clinical certainty and vascular burden. We assessed the impact of known AD loci across endophenotypes to generate loci categories. We incorporated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional genome-wide association study data sets. Results: We classified known AD loci into three categories, which might reflect the disease clinical heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The meta-analysis strategy revealed the ANKRD31-rs4704171 and NDUFAF6-rs10098778 and confirmed SCIMP-rs7225151 and CD33-rs3865444. Discussion: The regulation of vasculature is a prominent causal component of probable AD. GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clinical heterogeneity in the AD series
    • 

    corecore