201 research outputs found

    Differential Pre-mRNA Splicing Regulates Nnat Isoforms in the Hypothalamus after Gastric Bypass Surgery in Mice

    Get PDF
    Background Neuronatin (NNAT) is an endoplasmic reticulum proteolipid implicated in intracellular signalling. Nnat is highly-expressed in the hypothalamus, where it is acutely regulated by nutrients and leptin. Nnat pre-mRNA is differentially spliced to create Nnat-α and -β isoforms. Genetic variation of NNAT is associated with severe obesity. Currently, little is known about the long-term regulation of Nnat. Methods Expression of Nnat isoforms were examined in the hypothalamus of mice in response to acute fast/feed, chronic caloric restriction, diet-induced obesity and modified gastric bypass surgery. Nnat expression was assessed in the central nervous system and gastrointestinal tissues. RTqPCR was used to determine isoform-specific expression of Nnat mRNA. Results Hypothalamic expression of both Nnat isoforms was comparably decreased by overnight and 24-h fasting. Nnat expression was unaltered in diet-induced obesity, or subsequent switch to a calorie restricted diet. Nnat isoforms showed differential expression in the hypothalamus but not brainstem after bypass surgery. Hypothalamic Nnat-β expression was significantly reduced after bypass compared with sham surgery (P = 0.003), and was positively correlated with post-operative weight-loss (R2 = 0.38, P = 0.01). In contrast, Nnat-α expression was not suppressed after bypass surgery (P = 0.19), and expression did not correlate with reduction in weight after surgery (R2 = 0.06, P = 0.34). Hypothalamic expression of Nnat-β correlated weakly with circulating leptin, but neither isoform correlated with fasting gut hormone levels post- surgery. Nnat expression was detected in brainstem, brown-adipose tissue, stomach and small intestine. Conclusions Nnat expression in hypothalamus is regulated by short-term nutrient availability, but unaltered by diet-induced obesity or calorie restriction. While Nnat isoforms in the hypothalamus are co-ordinately regulated by acute nutrient supply, after modified gastric bypass surgery Nnat isoforms show differential expression. These results raise the possibility that in the radically altered nutrient and hormonal milieu created by bypass surgery, resultant differential splicing of Nnat pre-mRNA may contribute to weight-loss

    6-[(4-Hy­droxy­phen­yl)diazenyl]-1,10-phenanthrolin-1-ium chloride monohydrate

    Get PDF
    In the cation of the title mol­ecular salt, C18H13N4O+·Cl−·H2O, the dihedral angle between the mean planes of the 1,10-phenanthroline system and the phenol ring is 14.40 (19)°. The crystal packing is stabilized by O—H⋯O hydrogen bonds, weak N—H⋯Cl and O—H⋯Cl inter­molecular inter­actions and π—π stacking inter­actions [centroid–centroid distance = 3.6944 (13) and 3.9702 (12) Å

    Avoiding transcription factor competition at promoter level increases the chances of obtaining oscillation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ultimate goal of synthetic biology is the conception and construction of genetic circuits that are reliable with respect to their designed function (e.g. oscillators, switches). This task remains still to be attained due to the inherent synergy of the biological building blocks and to an insufficient feedback between experiments and mathematical models. Nevertheless, the progress in these directions has been substantial.</p> <p>Results</p> <p>It has been emphasized in the literature that the architecture of a genetic oscillator must include positive (activating) and negative (inhibiting) genetic interactions in order to yield robust oscillations. Our results point out that the oscillatory capacity is not only affected by the interaction polarity but by how it is implemented at promoter level. For a chosen oscillator architecture, we show by means of numerical simulations that the existence or lack of competition between activator and inhibitor at promoter level affects the probability of producing oscillations and also leaves characteristic fingerprints on the associated period/amplitude features.</p> <p>Conclusions</p> <p>In comparison with non-competitive binding at promoters, competition drastically reduces the region of the parameters space characterized by oscillatory solutions. Moreover, while competition leads to pulse-like oscillations with long-tail distribution in period and amplitude for various parameters or noisy conditions, the non-competitive scenario shows a characteristic frequency and confined amplitude values. Our study also situates the competition mechanism in the context of existing genetic oscillators, with emphasis on the Atkinson oscillator.</p

    Escherichia coli genome-wide promoter analysis: Identification of additional AtoC binding target elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on bacterial signal transduction systems have revealed complex networks of functional interactions, where the response regulators play a pivotal role. The AtoSC system of <it>E. coli </it>activates the expression of <it>atoDAEB </it>operon genes, and the subsequent catabolism of short-chain fatty acids, upon acetoacetate induction. Transcriptome and phenotypic analyses suggested that <it>atoSC </it>is also involved in several other cellular activities, although we have recently reported a palindromic repeat within the <it>atoDAEB </it>promoter as the single, <it>cis</it>-regulatory binding site of the AtoC response regulator. In this work, we used a computational approach to explore the presence of yet unidentified AtoC binding sites within other parts of the <it>E. coli </it>genome.</p> <p>Results</p> <p>Through the implementation of a computational <it>de novo </it>motif detection workflow, a set of candidate motifs was generated, representing putative AtoC binding targets within the <it>E. coli </it>genome. In order to assess the biological relevance of the motifs and to select for experimental validation of those sequences related robustly with distinct cellular functions, we implemented a novel approach that applies Gene Ontology Term Analysis to the motif hits and selected those that were qualified through this procedure. The computational results were validated using Chromatin Immunoprecipitation assays to assess the <it>in vivo </it>binding of AtoC to the predicted sites. This process verified twenty-two additional AtoC binding sites, located not only within intergenic regions, but also within gene-encoding sequences.</p> <p>Conclusions</p> <p>This study, by tracing a number of putative AtoC binding sites, has indicated an AtoC-related cross-regulatory function. This highlights the significance of computational genome-wide approaches in elucidating complex patterns of bacterial cell regulation.</p

    Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism

    Get PDF
    Objectives Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome\u27s functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. Design We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. Results Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. Conclusion Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF
    corecore