60 research outputs found

    Corrigendum to: �Novel and emerging mutations of SARS-CoV-2: Biomedical implications� Biomed. Pharmacother. 139 (2021) 111599 (Biomedicine & Pharmacotherapy (2021) 139, (S075333222100384X), (10.1016/j.biopha.2021.111599))

    Get PDF
    The authors regret the incorrect publication of affiliations of some of the authors in the original article. The correct affiliation of the authors are presented below: Elmira Mohammadia,b Fatemeh Shafieec Kiana Shahzamanid Mohammad Mehdi Ranjbare Abbas Alibakhshif Shahrzad Ahangarzadehg Leila Beikmohammadih,i Laleh Shariatij,k Soodeh Hooshmandil Behrooz Ataeim Shaghayegh HaghjooyJavanmarda a Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran b Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran c Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran d Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of medical sciences, Isfahan, Iran e Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran f Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran g Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran h Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands i Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran j Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran k Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran l Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran m Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran The authors would like to apologise for any inconvenience caused. © 202

    Novel and emerging mutations of SARS-CoV-2: Biomedical implications

    Get PDF
    Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 virus strains has geographical diversity associated with diverse severity, mortality rate, and response to treatment that were characterized using phylogenetic network analysis of SARS-CoV-2 genomes. Although, there is no explicit and integrative explanation for these variations, the genetic arrangement, and stability of SARS-CoV-2 are basic contributing factors to its virulence and pathogenesis. Hence, understanding these features can be used to predict the future transmission dynamics of SARS-CoV-2 infection, drug development, and vaccine. In this review, we discuss the most recent findings on the mutations in the SARS-CoV-2, which provide valuable information on the genetic diversity of SARS-CoV-2, especially for DNA-based diagnosis, antivirals, and vaccine development for COVID-19. © 202

    Strategies to Target Tumor Immunosuppression

    Get PDF
    The tumor microenvironment is currently in the spotlight of cancer immunology research as a key factor impacting tumor development and progression. While antigen-specific immune responses play a crucial role in tumor rejection, the tumor hampers these immune responses by creating an immunosuppressive microenvironment. Recently, major progress has been achieved in the field of cancer immunotherapy, and several groundbreaking clinical trials demonstrated the potency of such therapeutic interventions in patients. Yet, the responses greatly vary among individuals. This calls for the rational design of more efficacious cancer immunotherapeutic interventions that take into consideration the “immune signature” of the tumor. Multimodality treatment regimens that aim to enhance intratumoral homing and activation of antigen-specific immune effector cells, while simultaneously targeting tumor immunosuppression, are pivotal for potent antitumor immunity

    Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice

    Get PDF
    It is often challenging for the clinician interested in cystic fibrosis (CF) to interpret molecular genetic results, and to integrate them in the diagnostic process. The limitations of genotyping technology, the choice of mutations to be tested, and the clinical context in which the test is administered can all influence how genetic information is interpreted. This paper describes the conclusions of a consensus conference to address the use and interpretation of CF mutation analysis in clinical settings

    Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array.

    No full text
    Piezopolymer-based hydrophone arrays consisting of 20 elements were fabricated and tested for use in measuring the acoustic field from a shock-wave lithotripter. The arrays were fabricated from piezopolymer films and were mounted in a housing to allow submersion into water. The motivation was to use the array to determine how the shot-to-shot variability of the spark discharge in an electrohydraulic lithotripter affects the resulting focused acoustic field. It was found that the dominant effect of shot-to-shot variability was to laterally shift the location of the focus by up to 5 mm from the nominal acoustic axis of the lithotripter. The effect was more pronounced when the spark discharge was initiated with higher voltages. The lateral beamwidth of individual, instantaneous shock waves were observed to range from 1.5 mm to 24 mm. Due to the spatial variation of the acoustic field, the average of instantaneous beamwidths were observed to be 1 to 2 mm narrower than beamwidths determined from traditional single-point measurements that average the pressure measured at each location before computing beamwidth

    Instantaneous beamwidth measurements of an electrohydraulic lithotripter

    No full text
    Acoustic field measurements of electrohydraulic lithotripters (EHL) aretypically conducted with single-element hydrophones and are subject to spatialaveraging errors because the spark source location varies from shock to shock.Linear hydrophone arrays provide a means of obtaining the instantaneous soundfield of EHLs and a more detailed understanding of EHL sound fields. Here,20-element hydrophone arrays were used to study the variability of theinstantaneous acoustic field of an experimental EHL. Calibrated arrays wereplaced at the geometric focus of an EHL and exposed to as many as 1500 shockwaves using excitations of 14, 17 and 20 kV. Instantaneous data were acquiredfrom all 20 hydrophone elements and then were processed for beamwidth, peakpressure location, and peak pressure. Instantaneous beamwidths were found to besmaller than when using a single-element hydrophone approach and peak pressureswere observed to vary more as the excitation voltage increased. © 2010IEEE
    corecore