34 research outputs found

    Cardiovascular testing recovery in Latin America one year into the COVID-19 pandemic: An analysis of data from an international longitudinal survey.

    Get PDF
    The INCAPS COVID Investigators Group, listed by name in the Appendix, thank cardiology and imaging professional societies worldwide for their assistance in disseminating the survey to their memberships. These include alphabetically, but are not limited to, American Society of Nuclear Cardiology, Arab Society of Nuclear Medicine, Australasian Association of Nuclear Medicine Specialists, Australia-New Zealand Society of Nuclear Medicine, Belgian Society of Nuclear Medicine, Brazilian Nuclear Medicine Society, British Society of Cardiovascular Imaging, Conjoint Committee for the Recognition of Training in CT Coronary Angiography Australia and New Zealand, Consortium of Universities and Institutions in Japan, Danish Society of Cardiology, Gruppo Italiano Cardiologia Nucleare, Indonesian Society of Nuclear Medicine, Japanese Society of Nuclear Cardiology, Moscow Regional Department of Russian Nuclear Medicine Society, Philippine Society of Nuclear Medicine, Russian Society of Radiology, Sociedad Española de Medicina Nuclear e Imagen Molecular, Society of Cardiovascular Computed Tomography, and Thailand Society of Nuclear Medicine.Peer reviewe

    Worldwide diagnostic reference levels for single-photon emission computed tomography myocardial perfusion imaging: findings from INCAPS.

    Get PDF
    OBJECTIVES: This study sought to establish worldwide and regional diagnostic reference levels (DRLs) and achievable administered activities (AAAs) for single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). BACKGROUND: Reference levels serve as radiation dose benchmarks to compare individual laboratories against aggregated data, helping to identify sites in greatest need of dose reduction interventions. DRLs for SPECT MPI have previously been derived from national or regional registries. To date there have been no multiregional reports of DRLs for SPECT MPI from a single standardized dataset. METHODS: Data were submitted voluntarily to the INCAPS (International Atomic Energy Agency Nuclear Cardiology Protocols Study), a cross-sectional, multinational registry of MPI protocols. A total of 7,103 studies were included. DRLs and AAAs were calculated by protocol for each world region and for aggregated worldwide data. RESULTS: The aggregated worldwide DRLs for rest-stress or stress-rest studies employing technetium Tc 99m-labeled radiopharmaceuticals were 11.2 mCi (first dose) and 32.0 mCi (second dose) for 1-day protocols, and 23.0 mCi (first dose) and 24.0 mCi (second dose) for multiday protocols. Corresponding AAAs were 10.1 mCi (first dose) and 28.0 mCi (second dose) for 1-day protocols, and 17.8 mCi (first dose) and 18.7 mCi (second dose) for multiday protocols. For stress-only technetium Tc 99m studies, the worldwide DRL and AAA were 18.0 mCi and 12.5 mCi, respectively. Stress-first imaging was used in 26% to 92% of regional studies except in North America where it was used in just 7% of cases. Significant differences in DRLs and AAAs were observed between regions. CONCLUSIONS: This study reports reference levels for SPECT MPI for each major world region from one of the largest international registries of clinical MPI studies. Regional DRLs may be useful in establishing or revising guidelines or simply comparing individual laboratory protocols to regional trends. Organizations should continue to focus on establishing standardized reporting methods to improve the validity and comparability of regional DRLs

    Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS)

    Get PDF
    Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing ‘best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight ‘best practices' relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more ‘best practices' had lower EDs. Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globall

    Current worldwide nuclear cardiology practices and radiation exposure : results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS)

    Get PDF
    To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing 'best practices' worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March-April 2013. Eight 'best practices' relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more 'best practices' had lower EDs. Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally

    Valoración del flujo coronario mediante PET en la población mexicana sin enfermedad arterial coronaria

    No full text
    La enfermedad arterial coronaria (EAC) representa la primera causa de morbi mortalidad en nuestro medio. La tomografía por emisión de positrones (PET) es una técnica novedosa en nuestro país mediante la cual es posible valorar la perfusión miocárdica a través de radiotrazadores, lo que permite detectar defectos de perfusión utilizando los mismos criterios que en cardiología nuclear. A su vez, a través del estudio del flujo coronario (FC) es posible detectar la EAC en sus etapas más tempranas. El FC ha sido determinado en otras poblaciones a nivel mundial, sin embargo, hasta el momento no existen estudios en nuestro país que lo hayan valorado de manera no invasiva. La importancia de determinar el FC en voluntarios sanos radica en establecer una base para poder comparar estos resultados con los encontrados en pacientes con diferente patología que afecte el flujo coronario. Para la determinación del FC y la reserva de flujo coronario (RFC) y del índice de vasodilatación dependiente de endotelio (IVED) mediante PET se realizan 3 mediciones en 3 fases distintas: reposo, estimulación con frío (CPT) y esfuerzo farmacológico, con la utilización de amonio. Objetivo: Determinar el FC en las tres fases en población sana con la utilización de amonio-PET. Resultados: El FC global basal fue de 0.34 (±0.09) mL/g/min, durante el CPT incrementó a 0.55 (±0.17) mL/g/min y con el estrés llegó a 1.18 (±0.25). La RFC fue de 3.5 (±0.65) y el IVED de 1.55 (±0.33). Conclusiones: Los valores obtenidos de RFC y de IVED en población mexicana sana coincide con los reportados en la literatura. Estos valores representan una base de referencia para las investigaciones futuras con esta tecnología en nuestro país
    corecore