47 research outputs found

    Intentional weld defect process: From manufacturing by robotic welding machine to inspection using TFM phased array

    Get PDF
    Specimens with intentionally embedded weld defects or flaws can be employed for training, development and research into procedures for mechanical property evaluation and structural integrity assessment. It is critical that the artificial defects are a realistic representation of the flaws produced by welding. Cylindrical holes, which are usually machined after welding, are not realistic enough for our purposes as it is known that they are easier to detect than the naturally occurring imperfections and cracks. Furthermore, it is usually impractical to machine a defect in a location similar to where the real weld defects are found. For example, electro-discharge machining can produce a through hole (cylindrical reflector) which neither represents the weld porosity (spherical voids) nor the weld crack (planar thin voids). In this study, the aim is to embed reflectors inside the weld intentionally, and then locate them using ultrasonic phased array imaging. The specimen is an 8 mm thick 080A15 Bright Drawn Steel plate of length 300 mm. Tungsten rods (ø2.4-3.2 mm & length 20-25 mm) and tungsten carbide balls (ø4 mm) will be used to serve as reflectors simulating defects within the weld itself. This study is aligned to a larger research project investigating multi-layer metal NDE found in many multi-pass welding and wire arc additive manufacturing (WAAM) applications and as such, there is no joint preparation as the first layer is deposited over the plate surface directly and subsequent layers contribute to the specimen build profile, similar to the WAAM samples. A tungsten inert gas welding torch mounted on a KUKA robot is used to deposit four layers for each weld, with our process using nine passes for the first layer, down to six passes for the last layer. During this procedure, the tungsten artificial reflectors are embedded in the weld, between the existing layers. The sample is then inspected by a 10 MHz ultrasonic phased array in direct contact with the sample surface using both conventional and total focusing method (TFM) imaging techniques. A phased array aperture of 32 elements has been used. The phased array controller is FIToolbox (Diagnostic Sonar, UK). Firstly, a focused B-scan has been performed with a range of settings for the transmit focal depth. Secondly, a full-aperture TFM method has been processed. All the reflectors of interest were detected successfully using this combination of B-scan and TFM imaging approaches

    High sensitive TROponin levels In Patients with Chest pain and kidney disease:a multicenter registry: The TROPIC study

    Get PDF
      Background: Accuracy of high sensitive troponin (hs-cTn) to detect coronary artery disease (CAD) in patients with renal insufficiency is not established. The aim of this study was to evaluate the prognostic role of hs-cTn T and I in patients with chronic kidney disease (CKD). Methods: All consecutive patients with chest pain, renal insufficiency (eGFR < 60 mL/min/1.73 m2) and high sensitive troponin level were included. The predictive value of baseline and interval troponin (hs-cTnT and hs-cTnI) for the presence of CAD was assessed. Results: One hundred and thirteen patients with troponin I and 534 with troponin T were included, with 95 (84%) and 463 (87%) diagnosis of CAD respectively. There were no differences in clinical, procedural and outcomes between the two assays. For both, baseline hs-cTn values did not differ be­tween patients with/without CAD showing low area under the curve (AUC). For interval levels, hs-cTnI was significantly higher for patients with CAD (0.2 ± 0.8 vs. 8.9 ± 4.6 ng/mL; p = 0.04) and AUC was more accurate for troponin I than hs-cTnT (AUC 0.85 vs. 0.69). Peak level was greater for hs-cTnI in patients with CAD or thrombus (0.4 ± 0.6 vs. 15 ± 20 ng/mL; p = 0.02; AUC 0.87: 0.79–0.93); no differences were found for troponin T assays (0.8 ± 1.5 vs. 2.2 ± 3.6 ng/mL; p = 1.7), with lower AUC (0.73: 0.69–0.77). Peak troponin levels (both T and I) independently predicted all cause death at 30 days. Conclusions: Patients with CKD presenting with altered troponin are at high risk of coronary disease. Peak level of both troponin assays predicts events at 30 days, with troponin I being more accurate than troponin T. (Cardiol J 2017; 24, 2: 139–150

    A Transdimensional Bayesian Approach to Ultrasonic Travel-time Tomography for Non-Destructive Testing

    Get PDF
    Traditional imaging algorithms within the ultrasonic non-destructive testing community typically assume that the material being inspected is primarily homogeneous, with heterogeneities only at sub-wavelength scales. When the medium is of a more generally heterogeneous nature, this assumption can contribute to the poor detection, sizing and characterisation of any defects. Prior knowledge of the varying velocity fields within the component would allow more accurate imaging of defects, leading to better decisions about how to treat the damaged component. This work endeavours to reconstruct the inhomogeneous velocity fields of random media from simulated ultrasonic phased array data. This is achieved via application of the reversible-jump Markov chain Monte Carlo method: a sampling-based approach within a Bayesian framework. The inverted maps are then used in conjunction with an imaging algorithm to correct for deviations in the wave speed, and the reconstructed flaw images are then used to quantitatively measure the success of this methodology. Using full matrix capture data arising from a finite element simulation of a phased array inspection of a heterogeneous component, a six-fold improvement in flaw location is achieved by taking into account the reconstructed velocity map which exploits almost no \textit{a priori} knowledge of the material's internal structure. Receiver operating characteristic curves are then calculated to demonstrate the enhanced probability of detection achieved when the material map is accounted for

    Characteristics of patients presenting with myocardial infarction with non-obstructive coronary arteries (MINOCA) in Poland: data from the ORPKI national registry

    Get PDF
    Myocardial infarction (MI) with non-obstructive coronary arteries (MINOCA) is an important clinical problem especially in the era of extensive utilization of coronary angiography in MI patients. Its pathophysiology is poorly understood which makes diagnostics and treatment of MINOCA challenging in everyday clinical practice. The aim of the study was to assess characteristics of MINOCA patients in Poland based on data from the Polish National ORPKI Registry. In 2016, 49,893 patients with non-ST-segment elevation (NSTEMI) or ST-segment elevation (STEMI) myocardial infarction entered the ORPKI registry. MINOCA was defined as a non-obstructive coronary artery disease (CAD) and a lack of previous coronary revascularization. MINOCA was identified in 3924 (7.8%) patients and clinical presentation was more often NSTEMI than STEMI (MINOCA: 78 vs. 22%; obstructive CAD 51.1 vs. 48.9%; p\u2009<\u20090.0001). MINOCA patients were younger and more often females with significantly lower rates of diabetes, smoking, arterial hypertension, kidney disease, previous MI and previous stroke comparing to patients with obstructive CAD. Myocardial bridge was visualized in angiography more often in the MINOCA group (2.2 vs. 0.4%; p\u2009<\u20090.0001). Additional coronary assessment inducing fractional flow reserve, intravascular ultrasound, optical coherence tomography was marginally (<\u20091%) used in both groups. Periprocedural mortality was lower in MINOCA group (0.13% vs. 0.95%; p\u2009<\u20090.0001). MINOCA patients represent a significant proportion of MI patients in Poland. Due to multiple potential causes, MINOCA should be considered rather as a working diagnosis after coronary angiography and further efforts should be taken to define the cause of MI in each individual patient

    Ultrasonic phased array inspection of wire + arc additive manufacture samples using conventional and total focusing method imaging approaches

    No full text
    In this study, three aluminium samples produced by wire + arc additive manufacture (WAAM) are inspected using ultrasonic phased array technology. Artificial defects are machined using a centre drill, ø 3 mm, and electrical discharge machining (EDM), ø 0.5-1 mm, in a cylindrical through-hole topology. The samples are first inspected using a single-element wheel probe mounted on a KUKA robot in order to investigate the feasibility of using a conventional ultrasonic transducer approach. Unfortunately, the wheel probe is found to be unsuitable for scanning the WAAM specimens and ultrasonic phased arrays are employed next. The set-up includes 5 MHz and 10 MHz arrays (128 elements) in direct contact with the sample surface using both the conventional and total focusing method (TFM) imaging techniques. Using an FIToolbox (Diagnostic Sonar, UK) as the controller, a phased array aperture of 32 elements is used to perform a focused B-scan with a range of settings for the transmit focal depth. All of the reflectors (including those located near the WAAM top surface) are successfully detected with a combination of conventional phased array and TFM, using a range of settings and set-ups, including bottom surface inspection, application through a plexiglass wedge and variation of the scanning frequency
    corecore