109 research outputs found

    Hydroacoustic monitoring of seafloor spreading and transform faulting in the equatorial Atlantic Ocean

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Parnell-Turner, R., Smith, D. K., & Dziak, R. P. Hydroacoustic monitoring of seafloor spreading and transform faulting in the equatorial Atlantic Ocean. Journal of Geophysical Research: Solid Earth, 127(7), (2022): e2022JB024008, https://doi.org/10.1029/2022JB024008.Seismicity along mid-ocean ridges and oceanic transform faults provides insights into the processes of crustal accretion and strike-slip deformation. In the equatorial Atlantic ocean, the slow-spreading Mid-Atlantic Ridge is offset by some of the longest-offset transform faults on Earth, which remain relatively poorly understood due to its remote location far from land-based teleseismic receivers. A catalog of T-phase events detected by an array of 10 autonomous hydrophones deployed between 2011 and 2015, extending from 20°N to 10°S is presented. The final catalog of 6,843 events has a magnitude of completeness of 3.3, compared to 4.4 for the International Seismic Center teleseismic catalog covering the same region, and allows investigation of the dual processes of crustal accretion and transform fault slip. The seismicity rate observed at asymmetric spreading segments (those hosting detachment faults) is significantly higher than that of symmetric spreading centers, and 74% of known hydrothermal vents along the equatorial Mid-Atlantic Ridge occur on asymmetric spreading segments. Aseismic patches are present on nearly all equatorial Atlantic transform faults, including on the Romanche transform where regional rotation and transpression could explain both bathymetric uplift and reduction in seismic activity. The observed patterns in seismicity provide insight into the thermal and mechanical structure of the ridge axis and associated transform faults, and potentially provide a method for investigating the distribution of hydrothermal vent systems.This research was supported by National Science Foundation Grants EAR-1062238, EAR-1062165, and OCE-1839727. This paper is NOAA Pacific Marine Environmental Laboratory contribution 5323

    Hydroacoustic monitoring of oceanic spreading centers : past, present, and future

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 116–127, doi:10.5670/oceanog.2012.10.Mid-ocean ridge volcanism and extensional faulting are the fundamental processes that lead to the creation and rifting of oceanic crust, yet these events go largely undetected in the deep ocean. Currently, the only means available to observe seafloor-spreading events in real time is via the remote detection of the seismicity generated during faulting or intrusion of magma into brittle oceanic crust. Hydrophones moored in the ocean provide an effective means for detecting these small-magnitude earthquakes, and the use of this technology during the last two decades has facilitated the real-time detection of mid-ocean ridge seafloor eruptions and confirmation of subseafloor microbial ecosystems. As technology evolves and mid-ocean ridge studies move into a new era, we anticipate an expanding network of seismo-acoustic sensors integrated into seafloor fiber-optic cabled observatories, satellite-telemetered surface buoys, and autonomous vehicle platforms.SOSUS studies discussed in this paper were supported by the NOAA Vents Program and during 2006–2009 by the National Science Foundation, Grant OCE-0623649

    Evidence of a recent magma dike intrusion at the slow spreading Lucky Strike segment, Mid-Atlantic Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B12102, doi:10.1029/2004JB003141.Mid-ocean ridge volcanic activity is the fundamental process for creation of ocean crust, yet the dynamics of magma emplacement along the slow spreading Mid-Atlantic Ridge (MAR) are largely unknown. We present acoustical, seismological, and biological evidence of a magmatic dike intrusion at the Lucky Strike segment, the first detected from the deeper sections (>1500 m) of the MAR. The dike caused the largest teleseismic earthquake swarm recorded at Lucky Strike in >20 years of seismic monitoring, and one of the largest ever recorded on the northern MAR. Hydrophone records indicate that the rate of earthquake activity decays in a nontectonic manner and that the onset of the swarm was accompanied by 30 min of broadband (>3 Hz) intrusion tremor, suggesting a volcanic origin. Two submersible investigations of high-temperature vents located at the summit of Lucky Strike Seamount 3 months and 1 year after the swarm showed a significant increase in microbial activity and diffuse venting. This magmatic episode may represent one form of volcanism along the MAR, where highly focused pockets of magma are intruded sporadically into the shallow ocean crust beneath long-lived, discrete volcanic structures recharging preexisting seafloor hydrothermal vents and ecosystems.This study was made possible through the support of the U.S. National Science Foundation (grants OCE-9811575, OCE- 0137164, and OCE-0201692) and the NOAA Vents Program

    Long-term seismicity of the Reykjanes Ridge (North Atlantic) recorded by a regional hydrophone array

    Get PDF
    The seismicity of the northern Mid-Atlantic Ridge was recorded by two hydrophone networks moored in the sound fixing and ranging (SOFAR) channel, on the flanks of the Mid-Atlantic Ridge, north and south of the Azores. During its period of operation (05/2002-09/2003), the northern 'SIRENA' network, deployed between latitudes 40 degrees 20'N and 50 degrees 30'N, recorded acoustic signals generated by 809 earthquakes on the hotspot-influenced Reykjanes Ridge. This activity was distributed between five spatio-temporal event clusters, each initiated by a moderate-to-large magnitude (4.0-5.6 M) earthquake. The rate of earthquake occurrence within the initial portion of the largest sequence (which began on 2002 October 6) is described adequately by a modified Omori law aftershock model. Although this is consistent with triggering by tectonic processes, none of the Reykjanes Ridge sequences are dominated by a single large-magnitude earthquake, and they appear to be of relatively short duration (0.35-4.5 d) when compared to previously described mid-ocean ridge aftershock sequences. The occurrence of several near-equal magnitude events distributed throughout each sequence is inconsistent with the simple relaxation of main shock-induced stresses and may reflect the involvement of magmatic or fluid processes along this deep (>2000 m) section of the Reykjanes Ridge.info:eu-repo/semantics/publishedVersio

    Hydrothermal discharge during submarine eruptions : the importance of detection, response, and new technology

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 128–141, doi:10.5670/oceanog.2012.11.Submarine volcanic eruptions and intrusions construct new oceanic crust and build long chains of volcanic islands and vast submarine plateaus. Magmatic events are a primary agent for the transfer of heat, chemicals, and even microbes from the crust to the ocean, but the processes that control these transfers are poorly understood. The 1980s discovery that mid-ocean ridge eruptions are often associated with brief releases of immense volumes of hot fluids ("event plumes") spurred interest in methods for detecting the onset of eruptions or intrusions and for rapidly organizing seagoing response efforts. Since then, some 35 magmatic events have been recognized and responded to on mid-ocean ridges and at seamounts in both volcanic arc and intraplate settings. Field responses at mid-ocean ridges have found that event plumes occur over a wide range of eruption styles and sizes, and thus may be a common consequence of ridge eruptions. The source(s) of event plume fluids are still debated. Eruptions detected at ridges generally have high effusion rates and short durations (hours to days), whereas field responses at arc volcanic cones have found eruptions with very low effusion rates and durations on the scale of years. New approaches to the study of submarine magmatic events include the development of autonomous vehicles for detection and response, and the establishment of permanent seafloor observatories at likely future eruption sites.Support for these efforts came from the NOAA Vents Program and the National Science Foundation, primarily through its long-term funding of the RIDGE and Ridge 2000 Programs, including grants OCE-9812294 and OCE-0222069. SOSUS detection efforts were supported from 2006 to 2009 by the National Science Foundation, grant OCE-0623649

    Volcanic eruptions in the deep sea

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 142–157, doi:10.5670/oceanog.2012.12.Volcanic eruptions are important events in Earth's cycle of magma generation and crustal construction. Over durations of hours to years, eruptions produce new deposits of lava and/or fragmentary ejecta, transfer heat and magmatic volatiles from Earth's interior to the overlying air or seawater, and significantly modify the landscape and perturb local ecosystems. Today and through most of geological history, the greatest number and volume of volcanic eruptions on Earth have occurred in the deep ocean along mid-ocean ridges, near subduction zones, on oceanic plateaus, and on thousands of mid-plate seamounts. However, deep-sea eruptions (> 500 m depth) are much more difficult to detect and observe than subaerial eruptions, so comparatively little is known about them. Great strides have been made in eruption detection, response speed, and observational detail since the first recognition of a deep submarine eruption at a mid-ocean ridge 25 years ago. Studies of ongoing or recent deep submarine eruptions reveal information about their sizes, durations, frequencies, styles, and environmental impacts. Ultimately, magma formation and accumulation in the upper mantle and crust, plus local tectonic stress fields, dictate when, where, and how often submarine eruptions occur, whereas eruption depth, magma composition, conditions of volatile segregation, and tectonic setting determine submarine eruption style.NSF-OCE 0937409 (KHR), OCE-0525863 and OCE-0732366 (DJF and SAS), 0725605 (WWC), OCE- 0751780 (ETB and RWE), OCE‐0138088 (MRP), OCE-0934278 (DAC), OCE-0623649 (RPD), and a David and Lucile Packard Foundation grant to MBARI (DAC and DWC)

    Long-term Observations in Acoustics - the Ocean Acoustic Observatory Federation

    Get PDF
    The Ocean Acoustic Observatory Federation (OAOF) includes several laboratories and universities: the Institute of Geophysics and Planetary Physics (IGPP) and the Marine Physical Laboratory (MPL) at the Scripps Institution of Oceanography, the Pacific Meteorological and Environmental Laboratory (PMEL) of NOAA, the Naval Postgraduate School (NPS), and the Applied Physics Laboratory at the University of Washington (UW/APL)
    corecore