367 research outputs found

    Forward rapidity J/ψ production as a function of charged-particle multiplicity in pp collisions at s \sqrt{s} = 5.02 and 13 TeV

    No full text
    International audienceThe production of J/ψ is measured as a function of charged-particle multiplicity at forward rapidity in proton-proton (pp) collisions at center-of-mass energies s \sqrt{s} = 5.02 and 13 TeV. The J/ψ mesons are reconstructed via their decay into dimuons in the rapidity interval (2.5 < y < 4.0), whereas the charged-particle multiplicity density (dNch_{ch}/dη) is measured at midrapidity (|η| < 1). The production rate as a function of multiplicity is reported as the ratio of the yield in a given multiplicity interval to the multiplicity-integrated one. This observable shows a linear increase with charged-particle multiplicity normalized to the corresponding average value for inelastic events (dNch_{ch}/dη/〈dNch_{ch}/dηâŒȘ), at both the colliding energies. Measurements are compared with available ALICE results at midrapidity and theoretical model calculations. First measurement of the mean transverse momentum (〈pT_{T}âŒȘ) of J/ψ in pp collisions exhibits an increasing trend as a function of dNch_{ch}/dη/〈dNch_{ch}/dηâŒȘ showing a saturation towards high charged-particle multiplicities.[graphic not available: see fulltext

    Measurements of the groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV

    No full text
    International audienceThe jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity (|η| < 0.9). The anti-kT_{T} algorithm is used with jet resolution parameters R = 0.2 and R = 0.4 for several transverse momentum {p}_{\mathrm{T}}^{\mathrm{ch}} ^{jet} intervals in the 20–100 GeV/c range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, λα_{α}, and groomed jet angularities, λα,g_{α,g}, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters α = 1, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies.[graphic not available: see fulltext

    Inclusive quarkonium production in pp collisions at s=5.02\sqrt{s} = 5.02 TeV

    No full text
    This article reports on the inclusive production cross section of several quarkonium states, J/ψ\mathrm{J}/\psi, ψ(2S)\psi {\rm (2S)}, ΄(1S)\Upsilon\rm(1S), ΄(2S)\Upsilon\rm(2S), and ΄(3S)\Upsilon\rm(3S), measured with the ALICE detector at the LHC, in \pp collisions at s=5.02\sqrt{s} = 5.02 TeV. The analysis is performed in the dimuon decay channel at forward rapidity (2.5<y<42.5 < y < 4). The measured cross sections, assuming unpolarized quarkonia, are: σJ/ψ=5.88±0.03±0.34 Ό\sigma_{\mathrm{J}/\psi} = 5.88 \pm 0.03 \pm 0.34\ \mub, σψ(2S)=0.87±0.06±0.10 Ό\sigma_{\psi {\rm (2S)}} = 0.87 \pm 0.06 \pm 0.10\ \mub, σ΄(1S)=45.5±3.9±3.5\sigma_{\Upsilon\rm(1S)} = 45.5 \pm 3.9 \pm 3.5 nb, σ΄(2S)=22.4±3.2±2.7\sigma_{\Upsilon\rm(2S)} = 22.4 \pm 3.2 \pm 2.7 nb, and σ΄(3S)=4.9±2.2±1.0\sigma_{\Upsilon\rm(3S)} = 4.9 \pm 2.2 \pm 1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. The transverse-momentum (pTp_{\rm T}) and rapidity (yy) differential cross sections for J/ψ\mathrm{J}/\psi, ψ(2S)\psi {\rm (2S)}, ΄(1S)\Upsilon\rm(1S), and the ψ(2S)\psi {\rm (2S)}-to-J/ψ\mathrm{J}/\psi cross section ratios are presented. For the first time, the cross sections of the three ΄\Upsilon states, as well as the ψ(2S)\psi {\rm (2S)} one as a function of pTp_{\rm T} and yy, are measured at s=5.02\sqrt{s} = 5.02 TeV at forward rapidity. These measurements also significantly extend the J/ψ\mathrm{J}/\psipTp_{\rm T} reach with respect to previously published results. A comparison with ALICE measurements in pp collisions at s=2.76\sqrt{s} = 2.76, 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models

    Measurement of beauty production via non-prompt D0{\rm D}^{0} mesons in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The production of non-prompt D0{\rm D}^{0} mesons from beauty-hadron decays was measured at midrapidity (∣y∣5 GeV/c\left| y \right| 5~\mathrm{GeV}/c in the 0−100-10% central Pb-Pb collisions. The data are described by models that include both collisional and radiative processes in the calculation of beauty-quark energy loss in the quark-gluon plasma, and quark recombination in addition to fragmentation as a hadronization mechanism. The ratio of the non-prompt to prompt D0{\rm D}^{0}-meson RAAR_{\rm AA} is larger than unity for pT>4 GeV/cp_{\rm T} > 4~\mathrm{GeV}/c in the 0−100-10% central Pb-Pb collisions, as predicted by models in which beauty quarks lose less energy than charm quarks in the quark-gluon plasma because of their larger mass

    First measurement of the absorption of 3He‟^{3}\overline{\rm He} nuclei in matter and impact on their propagation in the galaxy

    No full text
    Antimatter particles such as positrons and antiprotons abound in the cosmos. Much less common are light antinuclei, composed of antiprotons and antineutrons, which can be produced in our galaxy via high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of the still undiscovered dark-matter particles. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators like the Large Hadron Collider (LHC). Though the properties of elementary antiparticles have been studied in detail, knowledge of the interaction of light antinuclei with matter is rather limited. This work focuses on the determination of the disappearance probability of \ahe when it encounters matter particles and annihilates or disintegrates. The material of the ALICE detector at the LHC serves as a target to extract the inelastic cross section for \ahe in the momentum range of 1.17≀p<101.17 \leq p < 10 GeV/cc. This inelastic cross section is measured for the first time and is used as an essential input to calculations of the transparency of our galaxy to the propagation of 3He‟^{3}\overline{\rm He} stemming from dark-matter decays and cosmic-ray interactions within the interstellar medium. A transparency of about 50% is estimated using the GALPROP program for a specific dark-matter profile and a standard set of propagation parameters. For cosmic-ray sources, the obtained transparency with the same propagation scheme varies with increasing 3He‟^{3}\overline{\rm He} momentum from 25% to 90%. The absolute uncertainties associated to the 3He‟^{3}\overline{\rm He} inelastic cross section measurements are of the order of 10%−-15%. The reported results indicate that 3He‟^{3}\overline{\rm He} nuclei can travel long distances in the galaxy, and can be used to study cosmic-ray interactions and dark-matter decays

    Measurement of beauty production via non-prompt D0{\rm D}^{0} mesons in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The production of non-prompt D0{\rm D}^{0} mesons from beauty-hadron decays was measured at midrapidity (∣y∣5 GeV/c\left| y \right| 5~\mathrm{GeV}/c in the 0−100-10% central Pb-Pb collisions. The data are described by models that include both collisional and radiative processes in the calculation of beauty-quark energy loss in the quark-gluon plasma, and quark recombination in addition to fragmentation as a hadronization mechanism. The ratio of the non-prompt to prompt D0{\rm D}^{0}-meson RAAR_{\rm AA} is larger than unity for pT>4 GeV/cp_{\rm T} > 4~\mathrm{GeV}/c in the 0−100-10% central Pb-Pb collisions, as predicted by models in which beauty quarks lose less energy than charm quarks in the quark-gluon plasma because of their larger mass

    Measurement of anti-3^3He nuclei absorption in matter and impact on their propagation in the Galaxy.

    No full text
    In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of 3He‟^{3}\overline{\rm He} when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of 3He‟^{3}\overline{\rm He} stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing 3He‟^{3}\overline{\rm He} momentum from 25% to 90% for cosmic-ray sources. The results indicate that 3He‟^{3}\overline{\rm He} nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation

    First measurement of the Λ\Lambda-Ξ\Xi interaction in proton-proton collisions at the LHC

    No full text
    International audienceThe first experimental information on the strong interaction between Λ\Lambda and Ξ−\Xi^- strange baryons is presented in this Letter. The correlation function of Λ−Ξ−\Lambda-\Xi^- and Λ‟−Ξ‟+\overline{\Lambda}-\overline{\Xi}^{+} pairs produced in high-multiplicity proton-proton (pp) collisions at s\sqrt{s} = 13 TeV at the LHC is measured as a function of the relative momentum of the pair. The femtoscopy method is used to calculate the correlation function, which is then compared with theoretical expectations obtained using a meson exchange model, chiral effective field theory, and Lattice QCD calculations close to the physical point. Data support predictions of small scattering parameters while discarding versions with large ones, thus suggesting a weak Λ−Ξ−\Lambda-\Xi^{-} interaction. The limited statistical significance of the data does not yet allow one to constrain the effects of coupled channels like Σ−Ξ\Sigma-\Xi and N−Ω-\Omega

    K∗(892)0\mathrm{K}^{*}(\mathrm{892})^{0} and ϕ(1020)\mathrm{\phi(1020)} production in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 8.16 TeV

    No full text
    The production of K∗(892)0\mathrm{K}^{*}(\mathrm{892})^{0} and ϕ(1020)\mathrm{\phi(1020)} resonances has been measured in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval −-0.5 8 GeV/cc), the RpPbR_{\rm pPb} values of all hadrons are consistent with unity within uncertainties. The RpPbR_{\rm pPb} of K∗(892)0\mathrm{K}^{*}(\mathrm{892})^{0} and ϕ(1020)\mathrm{\phi(1020)} at sNN\sqrt{s_{\rm NN}} = 8.16 and 5.02 TeV show no significant energy dependence

    Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations

    No full text
    Correlations between mean transverse momentum [pT][p_{\rm T}] and anisotropic flow coefficients v2v_{\rm 2} or v3v_{\rm 3} are measured as a function of centrality in Pb-Pb and Xe-Xe collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV and 5.44 TeV, respectively, with ALICE. In addition, the recently proposed higher-order correlation between [pT][p_{\rm T}], v2v_{\rm 2}, and v3v_{\rm 3} is measured for the first time, which shows an anticorrelation for the presented centrality ranges. These measurements are compared with hydrodynamic calculations using IP-Glasma and TRENTo\rm T_{R}ENTo initial-state shapes, the former based on the Color Glass Condensate effective theory with gluon saturation, and the latter a parameterized model with nucleons as the relevant degrees of freedom. The data are better described by the IP-Glasma rather than the TRENTo\rm T_{R}ENTo based calculations. In particular, Trajectum and JETSCAPE predictions, both based on the TRENTo\rm T_{R}ENTo initial state model but with different parameter settings, fail to describe the measurements. As the correlations between [pT][p_{\rm T}] and vnv_{\rm n} are mainly driven by the correlations of the size and the shape of the system in the initial state, these new studies pave a novel way to characterize the initial state in relativistic heavy-ion collisions
    • 

    corecore