124 research outputs found

    From imaging to simulation: a framework applied to simulate the blood flow in the carotids

    Get PDF
    In this work we present a methodology to extract information from medical imaging and use it for hemodynamical simulation in arteries. Based on in-vivo magnetic resonance images (MRI), the velocity of the blood flow has been measured at different positions and times. Also, the anatomy of the vessel has been converted into a volume mesh suitable for numerical modeling. This data has been used to solve computationally the dynamics of the fluid inside the artery in healthy and pathologic cases. As an application, we have developed a computational model within the carotids. The next step in the pipeline will be to extend the simulation to fluidstructure interaction (FSI) to find the parameters in an atherosclerotic plaque that could lead to rupture.Peer Reviewe

    From imaging to simulation: a framework applied to simulate the blood flow in the carotids

    Get PDF
    In this work we present a methodology to extract information from medical imaging and use it for hemodynamical simulation in arteries. Based on in-vivo magnetic resonance images (MRI), the velocity of the blood flow has been measured at different positions and times. Also, the anatomy of the vessel has been converted into a volume mesh suitable for numerical modeling. This data has been used to solve computationally the dynamics of the fluid inside the artery in healthy and pathologic cases. As an application, we have developed a computational model within the carotids. The next step in the pipeline will be to extend the simulation to fluidstructure interaction (FSI) to find the parameters in an atherosclerotic plaque that could lead to rupture.Peer Reviewe

    Rapid measurement of intravoxel incoherent motion (IVIM) derived perfusion fraction for clinical magnetic resonance imaging

    Get PDF
    Objective This study aimed to investigate the reliability of intravoxel incoherent motion (IVIM) model derived parameters D and f and their dependence on b value distributions with a rapid three b value acquisition protocol. Materials and methods Diffusion models for brain, kidney, and liver were assessed for bias, error, and reproducibility for the estimated IVIM parameters using b values 0 and 1000, and a b value between 200 and 900, at signal-to-noise ratios (SNR) 40, 55, and 80. Relative errors were used to estimate optimal b value distributions for each tissue scenario. Sixteen volunteers underwent brain DW-MRI, for which bias and coefficient of variation were determined in the grey matter. Results Bias had a large influence in the estimation of D and f for the low-perfused brain model, particularly at lower b values, with the same trends being confirmed by in vivo imaging. Significant differences were demonstrated in vivo for estimation of D (P = 0.029) and f (P < 0.001) with [300,1000] and [500,1000] distributions. The effect of bias was considerably lower for the high-perfused models. The optimal b value distributions were estimated to be brain500,1000, kidney300,1000, and liver200,1000. Conclusion IVIM parameters can be estimated using a rapid DW-MRI protocol, where the optimal b value distribution depends on tissue characteristics and compromise between bias and variability

    Capteurs mixtes Supraconducteur-MagnétoRésistance Géante pour la Résonance Magnétique Nucléaire

    No full text
    L objectif de cette étude est de détecter des signaux de Résonance Magnétique Nucléaire bas champ à l aide d un capteur mixte supraconducteur-MagnétoRésistance Géante, et d accroître la sensibilité d un tel capteur. Pour cela, une chaîne de détection basée sur des capteurs mixtes Supraconducteur-Spin Valve a été développée pour la détection de signaux radiofréquence. Des expériences de Résonance Magnétique Nucléaire ont été construites et testées pour la détection d explosifs et pour l imagerie des tissus aqueux. La possibilité de détection directe avec un capteur mixte a été démontrée sur des expériences de Résonance Quadripolaire Nucléaire d explosifs et d Imagerie par Résonance Magnétique de tissus aqueux. Les performances d un capteur mixte ont été comparées à celles des bobines accordées sur chaque expérience, l objectif étant de fournir grâce au capteur mixte un détecteur compétitif pour la Résonance Magnétique Nucléaire à bas champ.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    IVIM diffusion-weighted imaging of the liver at 3.0 T: Comparison with 1.5 T

    No full text
    Purpose: To compare intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) of the liver between 1.5 T and 3.0 T in terms of parameter quantification and inter-platform reproducibility. Materials and methods: In this IRB approved prospective study, 19 subjects (17 patients with chronic liver disease and 2 healthy volunteers) underwent two repeat scans at 1.5 T and 3.0 T. Each scan included IVIM DWI using 16 b values from 0 to 800 s/mm2. A single observer measured IVIM parameters for each platform and estimated signal to noise ratio (eSNR) at b0, 200, 400 and 800 s/mm2. Wilcoxon paired tests were used to compare liver eSNR and IVIM parameters. Inter-platform reproducibility was assessed by calculating within-subject coefficient of variation (CV) and Bland–Altman limits of agreement. An ice water phantom was used to test ADC variability between the two MRI systems. Results: The mean invitro difference in ADC between the two platforms was 6.8%. eSNR was significantly higher at 3.0T for all selected b values (p = 0.006–0.020), except for b0 (p = 0.239). Liver IVIM parameters were significantly different between 1.5 T and 3.0 T (p = 0.005–0.044), except for ADC (p = 0.748). The inter-platform reproducibility of true diffusion coefficient (D) and ADC were good, with mean CV of 10.9% and 11.1%, respectively. Perfusion fraction (PF) and pseudodiffusion coefficient (D*) showed more limited inter-platform reproducibility (mean CV of 22.6% for PF and 46.9% for D*). Conclusion: Liver D and ADC values showed good reproducibility between 1.5 T and 3.0 T platforms; while there was more variability in PF, and large variability in D* parameters between the two platforms. These findings may have implications for drug trials assessing the role of IVIM DWI in tumor response and liver fibrosis

    Quantitative liver MRI combining phase contrast imaging, elastography, and DWI: assessment of reproducibility and postprandial effect at 3.0 T.

    No full text
    To quantify short-term reproducibility (in fasting conditions) and postprandial changes after a meal in portal vein (PV) flow parameters measured with phase contrast (PC) imaging, liver diffusion parameters measured with multiple b value diffusion-weighted imaging (DWI) and liver stiffness (LS) measured with MR elastography (MRE) in healthy volunteers and patients with liver disease at 3.0 T.In this IRB-approved prospective study, 30 subjects (11 healthy volunteers and 19 liver disease patients; 23 males, 7 females; mean age 46.5 y) were enrolled. Imaging included 2D PC imaging, multiple b value DWI and MRE. Subjects were initially scanned twice in fasting state to assess short-term parameter reproducibility, and then scanned 20 min. after a liquid meal. PV flow/velocity, LS, liver true diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (PF) and apparent diffusion coefficient (ADC) were measured in fasting and postprandial conditions. Short-term reproducibility was assessed in fasting conditions by measuring coefficients of variation (CV) and Bland-Altman limits of agreement. Differences in MR metrics before and after caloric intake and between healthy volunteers and liver disease patients were assessed.PV flow parameters, D, ADC and LS showed good to excellent short-term reproducibility in fasting state (CV <16%), while PF and D* showed acceptable and poor reproducibility (CV = 20.4% and 51.6%, respectively). PV flow parameters and LS were significantly higher (p<0.04) in postprandial state while liver diffusion parameters showed no significant change (p>0.2). LS was significantly higher in liver disease patients compared to healthy volunteers both in fasting and postprandial conditions (p<0.001). Changes in LS were significantly correlated with changes in PV flow (Spearman rho = 0.48, p = 0.013).Caloric intake had no/minimal/large impact on diffusion/stiffness/portal vein flow, respectively. PC MRI and MRE but not DWI should be performed in controlled fasting state

    MASE-sLASER, a short-TE, matched chemical shift displacement error sequence for single-voxel spectroscopy at ultrahigh field

    No full text
    Contains fulltext : 192702.pdf (publisher's version ) (Closed access)15 p

    Changes in liver stiffness after a liquid meal (ΔLS*) correlated to changes in portal vein flow (ΔPV Flow*) in healthy volunteers (blue diamonds) and patients (red squares).

    No full text
    <p>There was a significant correlation between ΔLS vs. ΔPV Flow (Spearman rho = 0.48, p = 0.013 for all subjects; rho = 0.51 p = 0.05 for fibrosis patients, and rho = 0.41, p = 0.21 for healthy volunteers). *Δ computed as 100*(postprandial-fasting)/fasting.</p

    DCE-MRI of the liver: reconstruction of the arterial input function using a low dose pre-bolus contrast injection.

    No full text
    To assess the quality of the arterial input function (AIF) reconstructed using a dedicated pre-bolus low-dose contrast material injection imaged with a high temporal resolution and the resulting estimated liver perfusion parameters.In this IRB-approved prospective study, 24 DCE-MRI examinations were performed in 21 patients with liver disease (M/F 17/4, mean age 56 y). The examination consisted of 1.3 mL and 0.05 mmol/kg of gadobenate dimeglumine for pre-bolus and main bolus acquisitions, respectively. The concentration-curve of the abdominal aorta in the pre-bolus acquisition was used to reconstruct the AIF. AIF quality and shape parameters obtained with pre-bolus and main bolus acquisitions and the resulting estimated hepatic perfusion parameters obtained with a dual-input single compartment model were compared between the 2 methods. Test-retest reproducibility of perfusion parameters were assessed in three patients.The quality of the pre-bolus AIF curve was significantly better than that of main bolus AIF. Shape parameters peak concentration, area under the time activity curve of gadolinium contrast at 60 s and upslope of pre-bolus AIF were all significantly higher, while full width at half maximum was significantly lower than shape parameters of main bolus AIF. Improved liver perfusion parameter reproducibility was observed using pre-bolus acquisition [coefficient of variation (CV) of 4.2%-38.7% for pre-bolus vs. 12.1-71.4% for main bolus] with the exception of distribution volume (CV of 23.6% for pre-bolus vs. 15.8% for main bolus). The CVs between pre-bolus and main bolus for the perfusion parameters were lower than 14%.The AIF reconstructed with pre-bolus low dose contrast injection displays better quality and shape parameters and enables improved liver perfusion parameter reproducibility, although the resulting liver perfusion parameters demonstrated no clinically significant differences between pre-bolus and main bolus acquisitions

    Hepatocellular carcinoma: IVIM diffusion quantification for prediction of tumor necrosis compared to enhancement ratios

    No full text
    Purpose: To correlate intra voxel incoherent motion (IVIM) diffusion parameters of liver parenchyma and hepatocellular carcinoma (HCC) with degree of liver/tumor enhancement and necrosis; and to assess the diagnostic performance of diffusion parameters vs. enhancement ratios (ER) for prediction of complete tumor necrosis. Patients and methods: In this IRB approved HIPAA compliant study, we included 46 patients with HCC who underwent IVIM diffusion-weighted (DW) MRI in addition to routine sequences at 3.0 T. True diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (PF) and apparent diffusion coefficient (ADC) were quantified in tumors and liver parenchyma. Tumor ER were calculated using contrast-enhanced imaging, and degree of tumor necrosis was assessed using post-contrast image subtraction. IVIM parameters and ER were compared between HCC and background liver and between necrotic and viable tumor components. ROC analysis for prediction of complete tumor necrosis was performed. Results: 79 HCCs were assessed (mean size 2.5 cm). D, PF and ADC were significantly higher in HCC vs. liver (p  0.95, p < 0.002). Conclusion: D has a reasonable diagnostic performance for predicting complete tumor necrosis, however lower than that of contrast-enhanced imaging. Keywords: Hepatocellular carcinoma, Diffusion, Perfusion, Necrosi
    • …
    corecore