3,457 research outputs found

    Studies Of The Over-Rotating BMPV Solution

    Get PDF
    We study unphysical features of the BMPV black hole and how each can be resolved using the enhancon mechanism. We begin by reviewing how the enhancon mechanism resolves a class of repulson singularities which arise in the BMPV geometry when D--branes are wrapped on K3. In the process, we show that the interior of an enhancon shell can be a time machine due to non-vanishing rotation. We link the resolution of the time machine to the recently proposed resolution of the BMPV naked singularity / "over-rotating" geometry through the expansion of strings in the presence of RR flux. We extend the analysis to include a general class of BMPV black hole configurations, showing that any attempt to "over-rotate" a causally sound BMPV black hole will be thwarted by the resolution mechanism. We study how it may be possible to lower the entropy of a black hole due to the non-zero rotation. This process is prevented from occurring through the creation of a family of resolving shells. The second law of thermodynamics is thereby enforced in the rotating geometry - even when there is no risk of creating a naked singularity or closed time-like curves

    Two-channel Kondo model as a generalized one-dimensional inverse square long-range Haldane-Shastry spin model

    Full text link
    Majorana fermion representations of the algebra associated with spin, charge, and flavor currents have been used to transform the two-channel Kondo Hamiltonian. Using a path integral formulation, we derive a reduced effective action with long-range impurity spin-spin interactions at different imaginary times. In the semiclassical limit, it is equivalent to a one-dimensional Heisenberg spin chain with two-spin, three-spin, etc. long-range interactions, as a generalization of the inverse-square long-range Haldane-Shastry spin model. In this representation the elementary excitations are "semions", and the non-Fermi-liquid low-energy properties of the two-channel Kondo model are recovered.Comment: 4 pages, no figure, to be published in J. Phys.: Condens. Matter, 200

    On the Isomorphic Description of Chiral Symmetry Breaking by Non-Unitary Lie Groups

    Full text link
    It is well-known that chiral symmetry breaking (χ\chiSB) in QCD with Nf=2N_{f}=2 light quark flavours can be described by orthogonal groups as O(4)O(3)O(4) \to O(3), due to local isomorphisms. Here we discuss the question how specific this property is. We consider generalised forms of χ\chiSB involving an arbitrary number of light flavours of continuum or lattice fermions, in various representations. We search systematically for isomorphic descriptions by non-unitary, compact Lie groups. It turns out that there are a few alternative options in terms of orthogonal groups, while we did not find any description entirely based on symplectic or exceptional Lie groups. If we adapt such an alternative as the symmetry breaking pattern for a generalised Higgs mechanism, we may consider a Higgs particle composed of bound fermions and trace back the mass generation to χ\chiSB. In fact, some of the patterns that we encounter appear in technicolour models. In particular if one observes a Higgs mechanism that can be expressed in terms of orthogonal groups, we specify in which cases it could also represent some kind of χ\chiSB of techniquarks.Comment: 18 pages, to appear in Int. J. Mod. Phys.

    The Trouble with de Sitter Space

    Get PDF
    In this paper we assume the de Sitter Space version of Black Hole Complementarity which states that a single causal patch of de Sitter space is described as an isolated finite temperature cavity bounded by a horizon which allows no loss of information. We discuss the how the symmetries of de Sitter space should be implemented. Then we prove a no go theorem for implementing the symmetries if the entropy is finite. Thus we must either give up the finiteness of the de Sitter entropy or the exact symmetry of the classical space. Each has interesting implications for the very long time behavior. We argue that the lifetime of a de Sitter phase can not exceed the Poincare recurrence time. This is supported by recent results of Kachru, Kallosh, Linde and Trivedi.Comment: 15 pages, 1 figure. v2: added fifth section with comments on long time stability of de Sitter space, in which we argue that the lifetime can not exceed the Poincare recurrence time. v3: corrected a minor error in the appendi

    Long-Lived Venus Lander Conceptual Design: How To Keep It Cool

    Get PDF
    Surprisingly little is known about Venus, our neighboring sister planet in the solar system, due to the challenges of operating in its extremely hot, corrosive, and dense environment. For example, after over two dozen missions to the planet, the longest-lived lander was the Soviet Venera 13, and it only survived two hours on the surface. Several conceptual Venus mission studies have been formulated in the past two decades proposing lander architectures that potentially extend lander lifetime. Most recently, the Venus Science and Technology Definition Team (STDT) was commissioned by NASA to study a Venus Flagship Mission potentially launching in the 2020- 2025 time-frame; the reference lander of this study is designed to survive for only a few hours more than Venera 13 launched back in 1981! Since Cytherean mission planners lack a viable approach to a long-lived surface architecture, specific scientific objectives outlined in the National Science Foundation Decadal Survey and Venus Exploration Advisory Group final report cannot be completed. These include: mapping the mineralogy and composition of the surface on a planetary scale determining the age of various rock samples on Venus, searching for evidence of changes in interior dynamics (seismometry) and its impact on climate and many other key observations that benefit with time scales of at least a full Venus day (Le. daylight/night cycle). This report reviews those studies and recommends a hybrid lander architecture that can survive for at least one Venus day (243 Earth days) by incorporating selective Stirling multi-stage active cooling and hybrid thermoacoustic power

    1+1 Dimensional Compactifications of String Theory

    Full text link
    We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero the conflict is resolved.Comment: 11 pages, 2 figures v2: added discussion of AdS_2 and comment

    Introduction to Random Matrices

    Get PDF
    These notes provide an introduction to the theory of random matrices. The central quantity studied is τ(a)=det(1K)\tau(a)= det(1-K) where KK is the integral operator with kernel 1/\pi} {\sin\pi(x-y)\over x-y} \chi_I(y). Here I=j(a2j1,a2j)I=\bigcup_j(a_{2j-1},a_{2j}) and χI(y)\chi_I(y) is the characteristic function of the set II. In the Gaussian Unitary Ensemble (GUE) the probability that no eigenvalues lie in II is equal to τ(a)\tau(a). Also τ(a)\tau(a) is a tau-function and we present a new simplified derivation of the system of nonlinear completely integrable equations (the aja_j's are the independent variables) that were first derived by Jimbo, Miwa, M{\^o}ri, and Sato in 1980. In the case of a single interval these equations are reducible to a Painlev{\'e} V equation. For large ss we give an asymptotic formula for E2(n;s)E_2(n;s), which is the probability in the GUE that exactly nn eigenvalues lie in an interval of length ss.Comment: 44 page

    New Optimization Methods for Converging Perturbative Series with a Field Cutoff

    Full text link
    We take advantage of the fact that in lambda phi ^4 problems a large field cutoff phi_max makes perturbative series converge toward values exponentially close to the exact values, to make optimal choices of phi_max. For perturbative series terminated at even order, it is in principle possible to adjust phi_max in order to obtain the exact result. For perturbative series terminated at odd order, the error can only be minimized. It is however possible to introduce a mass shift in order to obtain the exact result. We discuss weak and strong coupling methods to determine the unknown parameters. The numerical calculations in this article have been performed with a simple integral with one variable. We give arguments indicating that the qualitative features observed should extend to quantum mechanics and quantum field theory. We found that optimization at even order is more efficient that at odd order. We compare our methods with the linear delta-expansion (LDE) (combined with the principle of minimal sensitivity) which provides an upper envelope of for the accuracy curves of various Pade and Pade-Borel approximants. Our optimization method performs better than the LDE at strong and intermediate coupling, but not at weak coupling where it appears less robust and subject to further improvements. We also show that it is possible to fix the arbitrary parameter appearing in the LDE using the strong coupling expansion, in order to get accuracies comparable to ours.Comment: 10 pages, 16 figures, uses revtex; minor typos corrected, refs. adde

    Statistical Analysis of Magnetic Field Spectra

    Get PDF
    We have calculated and statistically analyzed the magnetic-field spectrum (the ``B-spectrum'') at fixed electron Fermi energy for two quantum dot systems with classically chaotic shape. This is a new problem which arises naturally in transport measurements where the incoming electron has a fixed energy while one tunes the magnetic field to obtain resonance conductance patterns. The ``B-spectrum'', defined as the collection of values Bi{B_i} at which conductance g(Bi)g(B_i) takes extremal values, is determined by a quadratic eigenvalue equation, in distinct difference to the usual linear eigenvalue problem satisfied by the energy levels. We found that the lower part of the ``B-spectrum'' satisfies the distribution belonging to Gaussian Unitary Ensemble, while the higher part obeys a Poisson-like behavior. We also found that the ``B-spectrum'' fluctuations of the chaotic system are consistent with the results we obtained from random matrices
    corecore