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Statistical analysis of magnetic-field spectra
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We have calculated and statistically analyzed the magnetic-field spegtra® spectrum at fixed electron
Fermi energy for two quantum dot systems with classically chaotic shape. This problem arises naturally in
transport measurements where the incoming electron has a fixed energy while one tunes the magnetic field to
obtain resonance conductance patterns. Bhgpectrum, defined as the collection of valy&} at which
conductance(B;) takes extremal values, is determined by a quadratic eigenvalue equation, in distinct differ-
ence to the usual linear eigenvalue problem satisfied by the energy levels. We found that the lower part of the
B spectrum satisfies the distribution belonging to the Gaussian unitary ensemble, while the higher part obeys
a Poisson-like behavior. We also found that Biespectrum fluctuations of the chaotic system are consistent
with the results we obtained from random matride&30163-182@08)03543-1

Due to recent advances in controlled crystal growth andyuantum chaos discuss&tlUsing a two-dimensional2D)
lithographic techniques, it is now possible to fabricate vari-electron gas fabricated with compound semiconductors, ex-
ous “artificial atoms” or quantum dots the sizes of which are periments usually measure conductance as a function of ex-
so small such that transport is in the ballistic regime. ternal magnetic field$>%°g(B), at a fixed electron Fermi
Among the many interesting phenomena associated witenergyE,. When a quantum dot is weakly coupled to the
quantum ballistic transport, it was propo$éiiat these quan- external leads, the magnetoconductam{@) may show
tum dots could be used to examine the theoretical notion ofesonancelike behavior as the magnetic feles varied® if
quantum chao$.° More recently, Tayloet al. fabricated an  the measurement is indeed in a regime that probes the inter-
electronic Sinai billiarfl and investigated fluctuations of the nal electronic state¥. This behavior may be understood as
resistance as an external magnetic field is tuned. An imporfollows. AsB is varied, the energy levels;} of the scatter-
tant discovery of this work is the apparent fractal resistancéng states labeled by indicés=1,2, ... in the quantum dot
fluctuations’ which may be discussed on the basis of a semichange with it:e;=¢;(B). These levels are well separated
classical theory. since the the dot region is weakly coupled to the leads. For

The problem of quantum chaos is a very interesting thean incoming electron with a fixed Fermi energy,, each
oretical physics issue, and our theoretical understanding of ime when the internal state energyB) is tuned to be equal
has been advanced by random matrix the@®¥T), which  to E, asB is varied, a resonance peak occurg(iB) due to
classifies the statistics of the eigenspectrum of a quanturd junction resonance. This was indeed observed in numerical
system according to the Wigner-Dyson ensembBliess well  simulation§ by solving the quantum scattering problem.
established that, for a classically nonchaotic system such as@early this behavior should be observable if the Coulomb
particle confined to move inside a rectangular box, the norpjockade effects are small, which happens when the system
malized nearest-neighbor energy spacifgjsobey a Poisson  has a large capacitance, thus small charging energy. We shall
distributiont® P(s) =e ™. On the other hand, for a classically assume this to be the case.
chaotic system such as a spinless particle confined to move Hence in this junction resonance regime, it is interesting
inside a stadium shaped bbk;” the spacings follow the to define aB spectrum as the collection of values of the
Wigner distribution that belongs to the Gaussian OrthOgOﬂaépeciaj magnetic f|e|dB:{Bl} at WhIChg(B|) is peake(f_ It
ensemble(GOE) in the language of RMT’ Furthermore, s important to ask the following questions: what are the
when time-reversal invariance is broken, say, by applyingtatistical properties of thiB spectrum? How do its statisti-

a magnetic field, the system is descriedoy the cal properties change with the system shape? These are also
Gaussian unitary ensemble(GUE), where Py(s)  uyseful questions to answer because it is increasingly possible
~ (3252 w2)e~ (4" m), to directly probe the internal electronic states of an isolated

In order to study certain aspects of quantum chaos usinguantum dot, as demonstrated by the experiment reported in
quantumtransporttechniqueg;*>® one must deal with open Ref. 17.
systems where a scattering problem of charge carriers by Motivated by these questions, in this paper we report our
some peculiar boundary must be solved. Experimentally it istudies orclosedquantum dot systems where these questions
quite difficult to study conduction as a function of ineom-  can be answered clearly. Simons, Szafer, and Altshhkare
ing electron energyin a quantitatively accurate fashioh, investigated the correlations of slopes of the endegglsas
although measurements on a tunnel junctions made of Ad function of an external parameter such as the magnetic field
nanoparticles have recently be m&dand its relation to B. We, however, emphasize that in their studies, the focus is
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{—V2—ey+b2A2+2biA,- V}=0, 1)
; _ whereA=BA,=BX] is the vector potentialB is the mag-
N = netic field, E=%2ey/2m is the energyb=eB/%c, andi?
N = . - . . !
w NS = - — =- 1. D|sc'ret|zmg the spatial derivative, E@.) can be cast
g \\ ;@/ ° into a matrix form,
w00 |- N %
N s (My+ibM,+b?Mg) r=eof, )
400 ¢ N % whereM;,M,, M are real matrices arld ; is also diagonal.
e From Eq.(2) it is clear that for a fixed magnetic field the
600 0 20 - 0 100 solution of all the allowed energies forms the usual linear
Magnetic field B eigenvalue problem, which has been studied intensively.

FIG. 1. Typical curves of the energy levels as a function of theHowever’ for a fl_xed energy,, the solution of all the aI-_
magnetic field E—E(B), for the Sinai-like billiard. The vertical |2Wed magnetic field®, the B spectrum, forms a quadratic
solid line atB=B, intersects the spectrum and the intersectionse'genvalue problem. . .
give the usual energy leveE=E(B,). The B spectrum is the There_ are two methods to flnd thge spectrum. The first
collection of intersections of the horizontal solid line at a fixed mEthOd is by brute Torce: one d!re?tly calculates the energy
energyE=E, . eigenvalue€ for a given magnetic fiel@ and traces out the
curves ofE versusB. These curves may cross over each
on how a particu|ar energy |evEi varies with the external other. One then Calculates, from thisversusB curve, the
parameteB. Our investigation, on the other hand, is com- set of magnetic field8 for a fixed energyg,. Figure 1
pletely different as it does not focus on any energy level: theshows theE versusB curves for the first 40 eigenstates ob-
energyE, is a fixed parameter in the Schiiager equation tained using the Lanczos eigenvalue technffuer the
by the equ“ibrium Fermi energy of the system. Rather, WeSinai—Iike billiard system. However, this method gets time
investigate the statistical properties of the §Bf}, which ~ consuming very quickly if higher and higher states are

makesE, an eigenvalue of the Hamiltonian. Indeed, we noteneeded. _

that fixing B and studying energy levelE;}, or fixing E, The second method is to transform t.he quadratic eigen-

and studying thed spectrum{B;}, are two different prob- Value problem Eq.(2) into a usual linear eigenvalue

lems. The former is about the energy eigenvalue spectra arffoblem? Let W(t)=e®'y and define N;=Mz*(M,

its relation to an external parametB; while the latter is —€p), N,=M3;'M,, so that Eq.(2) becomes—I|¥"

relevant for transport situations where the incoming electront N,W'+ N, W =0 whereW'=ib¥ is the first derivative

has energ\E,, which is fixed by the electron reservoir and with respect to the parameterandl is the unit matrix. With

cannot change, while one tun& to special value§B;} ¥'=® (®'=ib®), we have d=¥'=ib¥ and N,o

where conductancg(B;) is peaked. To our knowledge the +N;¥=1®'=ib®, or

statistical ensemble that is satisfied by Bespectrum has

not previously been determined. As we shall see below, this 0 I\/(w\ (¥

B spectrum is determined by @uadratic eigenvalue prob- N, N, (cp :'b(q>)- 3

lem, in distinct contrast to the usual energy spectrum at a

fixed B, which is a linear eigenvalue problem. When a quan-This is a linear eigenvalue problem for The matrix in Eq.

tum dot is weakly coupled with the external leads, our an<{3) is, however, not Hermitian, hence its eigenvalues may or

swers are valid since in the weak coupling regime the levelgnay not be real. To obtain the physical solution, we look for

are well separated and statistical properties should nall imaginary eigenvalues so thhtis real. We verified that

change®?! the results coincide with those obtained with the conven-
To make the problem at hand clearer, the inset of Fig. 3ional Lanczos technique described above. In this way we

shows the two-dimensional quantum dot systems we havbave calculated th® spectrum from Eq(3) for the two

studied: a Sinai-like billiard and a stadium-shaped guantunchaotic systemsginset of Fig. 3, for different energies,.

dot. These systems are classically chaotic systems. ExpefThe confining potential is assumed to be hard wall.

mentally transport measurements have been reported through For the Sinai-like billiard, we considered a 4.3 um

these quantum dots, which were fabricated using the splitrectangular quantum dot with three hard disks inside the dot.

gate technology™®? Figure 1 shows the energy levels of a The radius of the disks were fixed at 0.9, 0.8, and OB

Sinai-like billiard as a function of magnetic fieB. For a  with their centers randomly chosen but without the disks

given B=B,, the levels satisfy GUE as mentioned above.overlapping each other. Randomly changing positions of the

These are the intersections of the liBe=B, (the vertical disks allows us to generate different configurations for en-

solid line) with the spectrum. However, for a fixed energy semble averaging to obtain reasonable statistics. The number

E=E,, we are interested in the intersections of the horizon-of physical solution$\ obtained from Eq(3) depends on the

tal solid line with the spectrum, which defines tBespec- fixed energyey, with N increasing with the value of the

trum. From the curves of Fig. 1 it is clearly not obvious whatenergye,. For instance, wher, is fixed at 30 meV, we

statistics theB spectrum will satisfy. haveN~ 1433 physical solutions for th® spectrum out of a

In the presence of a magnetic field, the single-particletotal of about 3000 eigenvalues. We found that the statistics

Schralinger equation can be written as of the B spectrum behaves differently for the lower and
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s FIG. 3. The spectral rigidityA3(L), whereL is the number of

the B levels involved in computing\;. The solid line is the ana-
: : : lytical expression for GUE statistics, taken from Ref. 18. Solid
spacings obtained from the lower part of tBBespectrum. The solid ' ) s .
P g b P squares, ensemble averaged data for 20 independent Sinai-like bil-

line is the analytical formula for GUEP,(s). Solid squares, lards: ircles. f di haped dot- trianal
ensemble-averaged data for 20 independent Sinai-like billiards/a"dS; open circles, for a stadium-shaped quantum dot; triangles,

open circles, for a stadium-shaped quantum dot; triangles, for rarfio™ the random matrices averaged over 13 configurations. Inset:
dom matrices averaged over 13 configurations. Inset: the distribtﬁketCh of the cha_otlc struc_:turesf S'[.Ud'ed here, a Sinai-like b||||_ard
tion function obtained from the higher part of tBespectrum of the with three hard disks confined inside a rectangle; and a stadium-
same systemésymbolg and the solid line is the Poisson distribu- shaped quantum dot.

tion P(s). The energy is fixed a¢y=30 meV.

FIG. 2. The distribution function of the nearest-neighBelevel

It is not difficult to understand that the higher part of the
higher part of the spectrum, respectively. The lo#est300 B spectrum should behave differently. The higher part cor-
B levels give GUE statistics and the highes800B levels  responds to larger values of the magnetic fields, which are
give a Poisson-like behavior. Figure 2 plots the distributionknown to destroy chads:* For the particular sizes of the
function obtained from our numerical data of the nearestSinai-like billiard and the stadium-shaped dot, the magnetic-
neighborB level spacings for the Sinai-like billiards. With field B, that roughly separates the low-lying and high-lying
the ensemble average of 20 different configurations, the digsart of theB spectrum is abouB.~3 to 4 T. The classical
tribution determined from the lower part of tf& spectrum  cyclotron radius of the electron at and above this field
agrees well with GUE statistiosolid line) P,(s) discussed strength is quite small compared with the system size. Hence
above. On the other hand, the higher part of the spectrunihe electron “skips” along the wall of the confining potential
shown in the inset of Fig. 2, has a Poisson-like behavior. or makes circular motion inside the quantum dot, thereby

Another often used measure in studying level statistics iseducing the effect of chaotic scattering by the geom&try.
the spectral rigidityA;, defined a%% the mean-square de- Nevertheless, the field range up By is quite wide and it
viation of the best local fit straight line to the staircase cu-should be possible to investigate tBespectrum experimen-
mulative spectral density over a normalized energy scaldally using resonant magneto-conductance measurements for
This quantity measures longer range correlations of the levedystems having weak coupling to the leads.
spectrum and often provides a more critical test of the level While the quadratic eigenvalue problems reported above
statistics. To computa ; we followed a scheme presented in were for billiard systems where the continuum Sclinger
Ref. 26, and the numerical data are compared with the anaquation is discretized to obtain the matrix equatidn we
lytical formula from random matrix theor/.Figure 3 shows also studied a similar quadratic eigenvalue problem using
the A5 analysis of the lower part of thB spectrum. It is random matrices to replace the matridég, M,, andM g in
clear that the data are in very good agreement with the GUIEQ. (2). Two requirements must be satisfied: first, the matri-
statistics®® cesM;, M,, and M3 must be real; secondyl; must be

To test the statistical properties of tBespectrum further, symmetric, and , antisymmetric so that the Hamiltonian be
we studied another chaotic system, namely a stadium-shapétermitian. The random matrices were set up in the standard
guantum dot(inset of Fig. 3. The distribution function and fashion: for aN X N matrix, M; hasN(N+ 1)/2 independent
A for its B spectrum are included in Figs. 2 and 3. Here wematrix elements and, hasN(N—1)/2, where the matrix
did not use an ensemble average and the data is for orelements are Gaussian random numbers. We then diagonal-
system only. The general trend is the same as for the Sinaized Eg.(3) using the same numerical methods discussed
like billiards, and still clearly shows the two distinct behav- above and found all the physical solutions. We chbke
iors for different parts of theB spectrum, namely a GUE =1500 so that the matrix that must be diagonalized is
behavior of the lower part and a Poisson-like behavior for3000x 3000. Typically we obtained about 700 physidl
the higher part. Finally, we have verified that the same stalevels for various energies,. The results are included in
tistical behavior is observed for both the Sinai-like billiard Figs. 2 and 3. It is clear that tHR-level statistics from the
and the stadium-shape billiard with many different values ofrandom matrices is completely consistent with the GUE sta-
the fixed energye,, and conclude that the lower part of the tistics. We may conclude thd@ spectra coming from the
B spectrum of both systems satisfies GUE statistics. quantum billiard systems and from random matrices are still
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consistent with each other and a universality can still be esFurther work is needed to provide an analytical understand-
tablished for this quadratic eigenvalue problem using theng.
random matrices. Experimentally the statistical properties of tBespectra

In summary, we have numerically investigated the statiscould be examined for quantum dot systems which couple
tical properties of the magnetic-field specfthe B spec- Weakly to the external leads and thus the transmission is
trum), which is determined by a quadratic eigenvalue prob-ontrolled by junction resonances. The weak coupling could
lem. This spectrum is defined by the allowed magnetic field$® Provided by adding constrictions at the connections of the
for an electron moving in a quantum dot with its fixed Fermi!€ads with the quantum dot for which only the lowest few
energy. This problem arises for systems with weak coupling;“'bb""mjS of the leads can propagate. In typical experimental

; ; : jtuation on submicron structures the single-particle level
to the leads in which the scattering states are well separat o X
9 P spacing is around 0.05 meV, thus they can be measured if the

in energy. For two different chaotic billiards, e.g., two- X
dimensional quantum dots in the shape of a Sinai-like pi{eMperature is kept to less than 500 mK. We thus conclude

liard and a stadium billiard, th® spectra have distinctly that for a magnetotransport measurement in the junction

X o ; ; esonance regime, the special magnetic-field strendtls
different statistical behavior at the lower and higher parts ot;t which g(B,) takes extremal values, should satisfy GUE

the spectra. In particular, the lower part is well described by tistics.

the GUE statistics while the higher part is Poisson like. We

found that the same quadratic eigenvalue problem can be We thank Professor R. Harris for useful discussions and a
studied using random matrices as well, and the eigenvaluagitical reading of the manuscript. We gratefully acknowl-
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this new problem. While our numerical data provided cleameering Research Council of Canada, and le Fonds pour la
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