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Statistical analysis of magnetic-field spectra
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~Received 24 September 1997!

We have calculated and statistically analyzed the magnetic-field spectrum~theB spectrum! at fixed electron
Fermi energy for two quantum dot systems with classically chaotic shape. This problem arises naturally in
transport measurements where the incoming electron has a fixed energy while one tunes the magnetic field to
obtain resonance conductance patterns. TheB spectrum, defined as the collection of values$Bi% at which
conductanceg(Bi) takes extremal values, is determined by a quadratic eigenvalue equation, in distinct differ-
ence to the usual linear eigenvalue problem satisfied by the energy levels. We found that the lower part of the
B spectrum satisfies the distribution belonging to the Gaussian unitary ensemble, while the higher part obeys
a Poisson-like behavior. We also found that theB spectrum fluctuations of the chaotic system are consistent
with the results we obtained from random matrices.@S0163-1829~98!03543-7#
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Due to recent advances in controlled crystal growth a
lithographic techniques, it is now possible to fabricate va
ous ‘‘artificial atoms’’ or quantum dots the sizes of which a
so small such that transport is in the ballistic regim1

Among the many interesting phenomena associated
quantum ballistic transport, it was proposed2 that these quan
tum dots could be used to examine the theoretical notion
quantum chaos.3–5 More recently, Tayloret al. fabricated an
electronic Sinai billiard6 and investigated fluctuations of th
resistance as an external magnetic field is tuned. An imp
tant discovery of this work is the apparent fractal resista
fluctuations,7 which may be discussed on the basis of a se
classical theory.8

The problem of quantum chaos is a very interesting t
oretical physics issue, and our theoretical understanding
has been advanced by random matrix theory~RMT!, which
classifies the statistics of the eigenspectrum of a quan
system according to the Wigner-Dyson ensembles.9 It is well
established that, for a classically nonchaotic system such
particle confined to move inside a rectangular box, the n
malized nearest-neighbor energy spacings$s% obey a Poisson
distribution10 P(s)5e2s. On the other hand, for a classical
chaotic system such as a spinless particle confined to m
inside a stadium shaped box,11,12 the spacings follow the
Wigner distribution that belongs to the Gaussian orthogo
ensemble~GOE! in the language of RMT.13 Furthermore,
when time-reversal invariance is broken, say, by apply
a magnetic field, the system is described14 by the
Gaussian unitary ensemble~GUE!, where P2(s)
'(32s2/p2)e2(4s2/p).

In order to study certain aspects of quantum chaos u
quantumtransport techniques,2,15,6 one must deal with open
systems where a scattering problem of charge carriers
some peculiar boundary must be solved. Experimentally
quite difficult to study conduction as a function of theincom-
ing electron energyin a quantitatively accurate fashion,16

although measurements on a tunnel junctions made o
nanoparticles have recently be made17 and its relation to
PRB 580163-1829/98/58~19!/13094~5!/$15.00
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quantum chaos discussed.18 Using a two-dimensional~2D!
electron gas fabricated with compound semiconductors,
periments usually measure conductance as a function of
ternal magnetic fields,2,15,6,19g(B), at a fixed electron Ferm
energyEo . When a quantum dot is weakly coupled to th
external leads, the magnetoconductanceg(B) may show
resonancelike behavior as the magnetic fieldB is varied,5 if
the measurement is indeed in a regime that probes the in
nal electronic states.17 This behavior may be understood a
follows. As B is varied, the energy levels$e i% of the scatter-
ing states labeled by indicesi 51,2, . . . in the quantum do
change with it:e i5e i(B). These levels are well separate
since the the dot region is weakly coupled to the leads.
an incoming electron with a fixed Fermi energyEo , each
time when the internal state energye i(B) is tuned to be equa
to Eo asB is varied, a resonance peak occurs ing(B) due to
a junction resonance. This was indeed observed in nume
simulations5 by solving the quantum scattering problem
Clearly this behavior should be observable if the Coulo
blockade effects are small, which happens when the sys
has a large capacitance, thus small charging energy. We
assume this to be the case.

Hence in this junction resonance regime, it is interest
to define aB spectrum as the collection of values of th
special magnetic fieldsB5$Bi% at whichg(Bi) is peaked.5 It
is important to ask the following questions: what are t
statistical properties of thisB spectrum? How do its statisti
cal properties change with the system shape? These are
useful questions to answer because it is increasingly poss
to directly probe the internal electronic states of an isola
quantum dot, as demonstrated by the experiment reporte
Ref. 17.

Motivated by these questions, in this paper we report
studies onclosedquantum dot systems where these questi
can be answered clearly. Simons, Szafer, and Altshuler4 have
investigated the correlations of slopes of the energylevelsas
a function of an external parameter such as the magnetic
B. We, however, emphasize that in their studies, the focu
13 094 ©1998 The American Physical Society
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on how a particular energy levelEi varies with the externa
parameterB. Our investigation, on the other hand, is com
pletely different as it does not focus on any energy level:
energyEo is a fixed parameter in the Schro¨dinger equation
by the equilibrium Fermi energy of the system. Rather,
investigate the statistical properties of the set$Bi%, which
makesEo an eigenvalue of the Hamiltonian. Indeed, we no
that fixing B and studying energy levels$Ei%, or fixing Eo
and studying theB spectrum$Bi%, are two different prob-
lems. The former is about the energy eigenvalue spectra
its relation to an external parameterB, while the latter is
relevant for transport situations where the incoming elect
has energyEo , which is fixed by the electron reservoir an
cannot change, while one tunesB to special values$Bi%
where conductanceg(Bi) is peaked. To our knowledge th
statistical ensemble that is satisfied by theB spectrum has
not previously been determined. As we shall see below,
B spectrum is determined by aquadratic eigenvalue prob-
lem, in distinct contrast to the usual energy spectrum a
fixed B, which is a linear eigenvalue problem. When a qua
tum dot is weakly coupled with the external leads, our a
swers are valid since in the weak coupling regime the lev
are well separated and statistical properties should
change.20,21

To make the problem at hand clearer, the inset of Fig
shows the two-dimensional quantum dot systems we h
studied: a Sinai-like billiard and a stadium-shaped quan
dot. These systems are classically chaotic systems. Ex
mentally transport measurements have been reported thr
these quantum dots, which were fabricated using the s
gate technology.15,6,2 Figure 1 shows the energy levels of
Sinai-like billiard as a function of magnetic fieldB. For a
given B5Bo , the levels satisfy GUE as mentioned abov
These are the intersections of the lineB5Bo ~the vertical
solid line! with the spectrum. However, for a fixed energ
E5Eo , we are interested in the intersections of the horiz
tal solid line with the spectrum, which defines theB spec-
trum. From the curves of Fig. 1 it is clearly not obvious wh
statistics theB spectrum will satisfy.

In the presence of a magnetic field, the single-parti
Schrödinger equation can be written as

FIG. 1. Typical curves of the energy levels as a function of
magnetic field,E5E(B), for the Sinai-like billiard. The vertical
solid line at B5Bo intersects the spectrum and the intersectio
give the usual energy levelsE5E(Bo). The B spectrum is the
collection of intersections of the horizontal solid line at a fix
energyE5Eo .
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$2¹22e01b2A0
212biAW 0•¹%c50, ~1!

whereAW 5BAW 05Bx̂ is the vector potential,B is the mag-
netic field, E5\2e0/2m is the energy,b5eB/\c, and i 2

521. Discretizing the spatial derivative, Eq.~1! can be cast
into a matrix form,

~M11 ibM21b2M3!c5e0c, ~2!

whereM1 ,M2 ,M3 are real matrices andM3 is also diagonal.
From Eq. ~2! it is clear that for a fixed magnetic field th
solution of all the allowed energies forms the usual line
eigenvalue problem, which has been studied intensiv
However, for a fixed energye0 , the solution of all the al-
lowed magnetic fieldsB, theB spectrum, forms a quadrati
eigenvalue problem.

There are two methods to find theB spectrum. The first
method is by brute force: one directly calculates the ene
eigenvaluesE for a given magnetic fieldB and traces out the
curves ofE versusB. These curves may cross over ea
other. One then calculates, from thisE versusB curve, the
set of magnetic fieldsB for a fixed energyEo . Figure 1
shows theE versusB curves for the first 40 eigenstates o
tained using the Lanczos eigenvalue technique22 for the
Sinai-like billiard system. However, this method gets tim
consuming very quickly if higher and higher states a
needed.

The second method is to transform the quadratic eig
value problem Eq.~2! into a usual linear eigenvalu
problem.23 Let C(t)5eibtc and define N15M3

21(M1

2e0), N25M3
21M2 , so that Eq. ~2! becomes 2IC9

1N2C81N1C50 whereC85 ibC is the first derivative
with respect to the parametert, andI is the unit matrix. With
C85F (F85 ibF), we have F5C85 ibC and N2F
1N1C5IF85 ibF, or

S 0 I

N1 N2
D S C

F D5 ibS C
F D . ~3!

This is a linear eigenvalue problem forb. The matrix in Eq.
~3! is, however, not Hermitian, hence its eigenvalues may
may not be real. To obtain the physical solution, we look
all imaginary eigenvalues so thatb is real. We verified that
the results coincide with those obtained with the conv
tional Lanczos technique described above. In this way
have calculated theB spectrum from Eq.~3! for the two
chaotic systems~inset of Fig. 3!, for different energiese0 .
The confining potential is assumed to be hard wall.

For the Sinai-like billiard, we considered a 4.734.3 mm
rectangular quantum dot with three hard disks inside the
The radius of the disks were fixed at 0.9, 0.8, and 0.5mm
with their centers randomly chosen but without the dis
overlapping each other. Randomly changing positions of
disks allows us to generate different configurations for
semble averaging to obtain reasonable statistics. The num
of physical solutionsN obtained from Eq.~3! depends on the
fixed energye0 , with N increasing with the value of the
energye0 . For instance, whene0 is fixed at 30 meV, we
haveN;1433 physical solutions for theB spectrum out of a
total of about 3000 eigenvalues. We found that the statis
of the B spectrum behaves differently for the lower an
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13 096 PRB 58JIAN WANG AND HONG GUO
higher part of the spectrum, respectively. The lowest24 ;300
B levels give GUE statistics and the highest;800 B levels
give a Poisson-like behavior. Figure 2 plots the distribut
function obtained from our numerical data of the neare
neighborB level spacings for the Sinai-like billiards. Wit
the ensemble average of 20 different configurations, the
tribution determined from the lower part of theB spectrum
agrees well with GUE statistics~solid line! P2(s) discussed
above. On the other hand, the higher part of the spectr
shown in the inset of Fig. 2, has a Poisson-like behavior

Another often used measure in studying level statistic
the spectral rigidityD3 , defined as9,25 the mean-square de
viation of the best local fit straight line to the staircase c
mulative spectral density over a normalized energy sc
This quantity measures longer range correlations of the le
spectrum and often provides a more critical test of the le
statistics. To computeD3 we followed a scheme presented
Ref. 26, and the numerical data are compared with the a
lytical formula from random matrix theory.27 Figure 3 shows
the D3 analysis of the lower part of theB spectrum. It is
clear that the data are in very good agreement with the G
statistics.28

To test the statistical properties of theB spectrum further,
we studied another chaotic system, namely a stadium-sh
quantum dot~inset of Fig. 3!. The distribution function and
D3 for its B spectrum are included in Figs. 2 and 3. Here
did not use an ensemble average and the data is for
system only. The general trend is the same as for the S
like billiards, and still clearly shows the two distinct beha
iors for different parts of theB spectrum, namely a GUE
behavior of the lower part and a Poisson-like behavior
the higher part. Finally, we have verified that the same
tistical behavior is observed for both the Sinai-like billia
and the stadium-shape billiard with many different values
the fixed energye0 , and conclude that the lower part of th
B spectrum of both systems satisfies GUE statistics.

FIG. 2. The distribution function of the nearest-neighborB-level
spacings obtained from the lower part of theB spectrum. The solid
line is the analytical formula for GUEP2(s). Solid squares,
ensemble-averaged data for 20 independent Sinai-like billia
open circles, for a stadium-shaped quantum dot; triangles, for
dom matrices averaged over 13 configurations. Inset: the distr
tion function obtained from the higher part of theB spectrum of the
same systems~symbols! and the solid line is the Poisson distribu
tion P(s). The energy is fixed ate0530 meV.
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It is not difficult to understand that the higher part of th
B spectrum should behave differently. The higher part c
responds to larger values of the magnetic fields, which
known to destroy chaos.29,3 For the particular sizes of the
Sinai-like billiard and the stadium-shaped dot, the magne
field Bc that roughly separates the low-lying and high-lyin
part of theB spectrum is aboutBc;3 to 4 T. The classical
cyclotron radius of the electron at and above this fie
strength is quite small compared with the system size. He
the electron ‘‘skips’’ along the wall of the confining potenti
or makes circular motion inside the quantum dot, there
reducing the effect of chaotic scattering by the geometr30

Nevertheless, the field range up toBc is quite wide and it
should be possible to investigate theB spectrum experimen
tally using resonant magneto-conductance measurement
systems having weak coupling to the leads.

While the quadratic eigenvalue problems reported ab
were for billiard systems where the continuum Schro¨dinger
equation is discretized to obtain the matrix equation~3!, we
also studied a similar quadratic eigenvalue problem us
random matrices to replace the matricesM1 , M2 , andM3 in
Eq. ~2!. Two requirements must be satisfied: first, the ma
ces M1 , M2 , and M3 must be real; second,M1 must be
symmetric, andM2 antisymmetric so that the Hamiltonian b
Hermitian. The random matrices were set up in the stand
fashion: for aN3N matrix, M1 hasN(N11)/2 independent
matrix elements andM2 hasN(N21)/2, where the matrix
elements are Gaussian random numbers. We then diago
ized Eq. ~3! using the same numerical methods discus
above and found all the physical solutions. We choseN
51500 so that the matrix that must be diagonalized
300033000. Typically we obtained about 700 physicalB
levels for various energiese0 . The results are included in
Figs. 2 and 3. It is clear that theB-level statistics from the
random matrices is completely consistent with the GUE s
tistics. We may conclude thatB spectra coming from the
quantum billiard systems and from random matrices are

s;
n-
u-

FIG. 3. The spectral rigidityD3(L), whereL is the number of
the B levels involved in computingD3 . The solid line is the ana-
lytical expression for GUE statistics, taken from Ref. 18. So
squares, ensemble averaged data for 20 independent Sinai-like
liards; open circles, for a stadium-shaped quantum dot; triang
from the random matrices averaged over 13 configurations. In
sketch of the chaotic structures studied here, a Sinai-like billi
with three hard disks confined inside a rectangle; and a stadi
shaped quantum dot.



e
th

tis

b
ld
m
lin
at
o-
bi

o
b

lu
v
ity
er
a

ra

ity

nd-

ple
is

uld
the
w
ntal
vel
f the
ude
tion

E

d a
l-

nda-
er
gi-
r la

of

PRB 58 13 097STATISTICAL ANALYSIS OF MAGNETIC-FIELD SPECTRA
consistent with each other and a universality can still be
tablished for this quadratic eigenvalue problem using
random matrices.

In summary, we have numerically investigated the sta
tical properties of the magnetic-field spectra~the B spec-
trum!, which is determined by a quadratic eigenvalue pro
lem. This spectrum is defined by the allowed magnetic fie
for an electron moving in a quantum dot with its fixed Fer
energy. This problem arises for systems with weak coup
to the leads in which the scattering states are well separ
in energy. For two different chaotic billiards, e.g., tw
dimensional quantum dots in the shape of a Sinai-like
liard and a stadium billiard, theB spectra have distinctly
different statistical behavior at the lower and higher parts
the spectra. In particular, the lower part is well described
the GUE statistics while the higher part is Poisson like. W
found that the same quadratic eigenvalue problem can
studied using random matrices as well, and the eigenva
from the random matrices have precisely the same beha
as those of the billiards. Thus the notion of universal
classes using the random matrix theory can be carried ov
this new problem. While our numerical data provided cle
evidence of the statistical properties of the present quad
eigenvalue problem, it is not at all obviousa priori that such
statistical properties are controlled by the GUE universal
a

s

rd

cs

p

en

ol
. J

ve
s-
e

-

-
s
i
g
ed

l-

f
y
e
be
es
ior

to
r
tic

.

Further work is needed to provide an analytical understa
ing.

Experimentally the statistical properties of theB spectra
could be examined for quantum dot systems which cou
weakly to the external leads and thus the transmission
controlled by junction resonances. The weak coupling co
be provided by adding constrictions at the connections of
leads with the quantum dot for which only the lowest fe
subbands of the leads can propagate. In typical experime
situation on submicron structures the single-particle le
spacing is around 0.05 meV, thus they can be measured i
temperature is kept to less than 500 mK. We thus concl
that for a magnetotransport measurement in the junc
resonance regime, the special magnetic-field strengths$Bi%
at which g(Bi) takes extremal values, should satisfy GU
statistics.
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