178 research outputs found

    Trump holds more positive views toward Vladimir Putin than both his predecessor and his own foreign policy team

    Get PDF
    Content analysis of public statements by Stephen Benedict Dyson and Matthew J. Parent shows that President Trump has described a more positive approach to Russia than that of President Obama, and President Putin has responded in kind. Data shows that foreign policy officials of the Trump administration hold significantly more hostile views toward Russia than the president, providing further insight into the nature of the Putin-Trump relationship

    1+1 Dimensional Compactifications of String Theory

    Full text link
    We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero the conflict is resolved.Comment: 11 pages, 2 figures v2: added discussion of AdS_2 and comment

    A Conformal Field Theory for Eternal Inflation

    Full text link
    We study a statistical model defined by a conformally invariant distribution of overlapping spheres in arbitrary dimension d. The model arises as the asymptotic distribution of cosmic bubbles in d+1 dimensional de Sitter space, and also as the asymptotic distribution of bubble collisions with the domain wall of a fiducial "observation bubble" in d+2 dimensional de Sitter space. In this note we calculate the 2-,3-, and 4-point correlation functions of exponentials of the "bubble number operator" analytically in d=2. We find that these correlators, when carefully defined, are free of infrared divergences, covariant under the global conformal group, charge conserving, and transform with positive conformal dimensions that are related in a novel way to the charge. Although by themselves these operators probably do not define a full-fledged conformal field theory, one can use the partition function on a sphere to compute an approximate central charge in the 2D case. The theory in any dimension has a noninteracting limit when the nucleation rate of the bubbles in the bulk is very large. The theory in two dimensions is related to some models of continuum percolation, but it is conformal for all values of the tunneling rate.Comment: 30 pages, 8 figure

    Mass Flows in Cometary UCHII Regions

    Full text link
    High spectral and spatial resolution, mid-infrared fine structure line observations toward two ultracompact HII (UCHII) regions (G29.96 -0.02 and Mon R2) allow us to study the structure and kinematics of cometary UCHII regions. In our earlier study of Mon R2, we showed that highly organized mass motions accounted for most of the velocity structure in that UCHII region. In this work, we show that the kinematics in both Mon R2 and G29.96 are consistent with motion along an approximately paraboloidal shell. We model the velocity structure seen in our mapping data and test the stellar wind bow shock model for such paraboloidal like flows. The observations and the simulation indicate that the ram pressures of the stellar wind and ambient interstellar medium cause the accumulated mass in the bow shock to flow along the surface of the shock. A relaxation code reproduces the mass flow's velocity structure as derived by the analytical solution. It further predicts that the pressure gradient along the flow can accelerate ionized gas to a speed higher than that of the moving star. In the original bow shock model, the star speed relative to the ambient medium was considered to be the exit speed of ionized gas in the shell.Comment: 34 pages, including 14 figures and 1 table, to be published in ApJ, September 200

    A unified picture of aggregate formation in a model polymer semiconductor during solution processing

    Get PDF
    One grand challenge for printed organic electronics is the development of a knowledge platform that describes how polymer semiconductors assemble from solution, which requires a unified picture of the complex interplay of polymer solubility, mass transport, nucleation and, e.g., vitrification. One crucial aspect, thereby, is aggregate formation, i.e., the development of electronic coupling between adjacent chain segments. Here, it is shown that the critical aggregation temperatures in solution (no solvent evaporation allowed) and during film formation (solvent evaporation occurring) are excellent pointers to i) establish reliable criteria for polymer assembly into desired aggregates, and ii) advance mechanistic understanding of the overall polymer assembly. Indeed, important insights are provided on why aggregation occurs via a 1- or 2-step process depending on polymer solubility, deposition temperature and solvent evaporation rate; and the selection of deposition temperatures for specific scenarios (e.g., good vs bad solvent) is demystified. Collectively, it is demonstrated that relatively straightforward, concurrent in situ time-resolved absorbance and photoluminescence spectroscopies to monitor aggregate formation lead to highly useful and broadly applicable criteria for processing functional plastics. In turn, improved control over their properties and device performance can be obtained toward manufacturing sensors, energy-harvesting devices and, e.g., bioelectronics systems at high yield

    Managing Local Order in Conjugated Polymer Blends via Polarity Contrast

    Get PDF
    The optoelectronic landscape of conjugated polymers is intimately related to their molecular arrangement and packing, with minute changes in local order, such as chain conformation and torsional backbone order/disorder, frequently having a substantial effect on macroscopic properties. While many of these local features can be manipulated via chemical design, the synthesis of a series of compounds is often required to elucidate correlations between chemical structure and macromolecular ordering. Here, we show that blending semiconducting polymers with insulating commodity plastics enables controlled manipulation of the semiconductor backbone planarity. The key is to create a polarity difference between the semiconductor backbone and its side chains, while matching the polarity of the side chains and the additive. We demonstrate the applicability of this approach through judicious comparison of regioregular poly(3-hexylthiophene) (P3HT) with two of its more polar derivatives, namely the diblock copolymer poly(3-hexylthiophene)-block-poly(ethylene oxide) (P3HT-b-PEO) and the graft polymer poly[3-but(ethylene oxide)thiophene] (P3BEOT), as well as their blends with poly(ethylene oxide) (PEO). Proximity between polar side chains and a similarly polar additive reduces steric hindrance between individual chain segments by essentially "expelling" the side chains away from the semiconducting backbones. This process, shown to be facilitated via exposure to polar environments such as humid air/water vapor, facilitates backbone realignment toward specific chain arrangements and, in particular, planar backbone configurations

    The Trouble with de Sitter Space

    Get PDF
    In this paper we assume the de Sitter Space version of Black Hole Complementarity which states that a single causal patch of de Sitter space is described as an isolated finite temperature cavity bounded by a horizon which allows no loss of information. We discuss the how the symmetries of de Sitter space should be implemented. Then we prove a no go theorem for implementing the symmetries if the entropy is finite. Thus we must either give up the finiteness of the de Sitter entropy or the exact symmetry of the classical space. Each has interesting implications for the very long time behavior. We argue that the lifetime of a de Sitter phase can not exceed the Poincare recurrence time. This is supported by recent results of Kachru, Kallosh, Linde and Trivedi.Comment: 15 pages, 1 figure. v2: added fifth section with comments on long time stability of de Sitter space, in which we argue that the lifetime can not exceed the Poincare recurrence time. v3: corrected a minor error in the appendi

    Out of equilibrium: understanding cosmological evolution to lower-entropy states

    Get PDF
    Despite the importance of the Second Law of Thermodynamics, it is not absolute. Statistical mechanics implies that, given sufficient time, systems near equilibrium will spontaneously fluctuate into lower-entropy states, locally reversing the thermodynamic arrow of time. We study the time development of such fluctuations, especially the very large fluctuations relevant to cosmology. Under fairly general assumptions, the most likely history of a fluctuation out of equilibrium is simply the CPT conjugate of the most likely way a system relaxes back to equilibrium. We use this idea to elucidate the spacetime structure of various fluctuations in (stable and metastable) de Sitter space and thermal anti-de Sitter space.Comment: 27 pages, 11 figure

    Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis

    Get PDF
    Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea
    corecore