2,438 research outputs found

    Bragg spectroscopy of a strongly interacting Fermi gas

    Full text link
    We present a comprehensive study of the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover in fermionic 6^6Li using Bragg spectroscopy. A smooth transition from molecular to atomic spectra is observed with a clear signature of pairing at and above unitarity. These spectra probe the dynamic and static structure factors of the gas and provide a direct link to two-body correlations. We have characterised these correlations and measured their density dependence across the broad Feshbach resonance at 834 G.Comment: Replaced with published versio

    Contact and sum-rules in a near-uniform Fermi gas at unitarity

    Full text link
    We present an experimental study of the high-energy excitation spectra of unitary Fermi gases. Using focussed beam Bragg spectroscopy, we locally probe atoms in the central region of a harmonically trapped cloud where the density is nearly uniform, enabling measurements of the dynamic structure factor for a range of temperatures both below and above the superfluid transition. Applying sum-rules to the measured Bragg spectra, we resolve the characteristic behaviour of the universal contact parameter, C{\cal C}, across the superfluid transition. We also employ a recent theoretical result for the kinetic (second-moment) sum-rule to obtain the internal energy of gases at unitarity.Comment: 5 pages, 4 figure

    Direct Evidence for a Magnetic f-electron Mediated Cooper Pairing Mechanism of Heavy Fermion Superconductivity in CeCoIn5

    Get PDF
    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,βE_k^{\alpha,\beta} with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.Comment: 19 pages, 4 figures, Supplementary Information: 31 pages, 5 figure

    Thermodynamics of an attractive 2D Fermi gas

    Full text link
    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behaviour.Comment: Contains minor revision

    Crossover from 2D to 3D in a weakly interacting Fermi gas

    Full text link
    We have studied the transition from two to three dimensions in a low temperature weakly interacting 6^6Li Fermi gas. Below a critical atom number, N2DN_{2D}, only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two-dimensional. Above N2DN_{2D} the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.Comment: Replaced with published manuscrip

    A note on leapfrogging vortex rings

    Get PDF
    In this paper we provide examples, by numerical simulation using the Navier-Stokes equations for axisymmetric laminar flow, of the 'leapfrogging' motion of two, initially identical, vortex rings which share a common axis of symmetry. We show that the number of clear passes that each ring makes through the other increases with Reynolds number, and that as long as the configuration remains stable the two rings ultimately merge to form a single vortex ring
    corecore