61 research outputs found

    Inland Waterway Operational Model & Simulation Along the Ohio River

    Get PDF
    The inland waterway system of the U.S. is a vital network for transporting key goods and commodities from the point of production to manufacturers and consumers. Shipping materials via the inland waterways is arguably the most economical and environmentally friendly option (compared to hauling freight by trains or railways). Despite the advantages the inland waterways enjoys over competing modes, key infrastructure – such as locks and dams, which help to control water levels on a number of rivers and make navigation possible – is declining. Limited funds have been allocated to make the necessary repairs to lock and dam facilities. Over the past 10 years Inland Waterways Trust Fund resources (which historically funded maintenance and improvement projects) has steadily declined. Locks and dams are of particular importance, because they assist in the maintenance of navigable depths on many of the major inland waterways (Ohio River, Upper Mississippi River, Tennessee River). To better understand the operation of the inland waterway system, this report examines a portion of the Ohio River (extending from Markland Locks and Dam to Lock 53). The specific focus is to determine what delays barge tows as they attempt to lock through these critical facilities. The Ohio River is a particularly important study area. In many ways it is representative of the conditions present throughout the inland waterways system. The average age of the lock and dam facilities exceed 50 years along our study segment. Most of these facilities are operating beyond their intended design life. As locks age, they increasingly demand more scheduled and unscheduled maintenance activities. Maintenance activities often require temporarily shuttering a lock chamber and diverting traffic through another onsite chamber (often of smaller capacity). All of the facilities included in the research area have two lock chambers ‐ thus, if one goes down for maintenance all vessels are diverted through the second chamber. In many cases this situation can produce extensive delays, which precludes cargo from reaching the destination in a timely manner. Recently, the aggregate number of hours that shippers and carriers lose due to delays has escalated. Although the U.S. Army Corps of Engineers – the agency responsible for the management and oversight of locks and dams – has worked to keep traffic flowing on the river, tightening budgets hamper efforts. For shippers and carriers to make informed decisions about when and where to deploy freight on the river, they require knowledge that illuminates factors that are most significant in affecting transit times. In particular this applies to certain conditions that are likely to create delays at lock and dam facilities. The purpose of this report is to 1) develop a comprehensive profile of the Ohio River that provides an overview of how it is integral to U.S. economic security 2) identify salient river characteristics or externally‐driven variables that influence the amount of water flowing through the main channel which consequently impacts vessels’ capacity to navigate 3) use this information (along with a 10‐year data set encompassing over 600,000 observations) to develop an Inland Waterways Operational Model (IWOM). The IWOM objective is to provide the U.S. Army Corps of Engineers, shippers, carriers, and other interested parties with access to8 a robust method that aids in the prediction of where and when conditions will arise on the river that have the potential to significantly impact lockage times and queue times (i.e. how long a vessel has to wait after it arrives at a facility to lock through). After qualitatively reviewing different features of the river system that affect vessel traffic, this report outlines two approaches to modeling inland waterway system behavior – a discrete event simulation (DES) model which uses proprietary software, and the IWOM. Although the DES produced robust findings that aligned with the historical data (because it relies upon proprietary software), it does not offer an ideal platform to distribute knowledge to stakeholders. Indeed, this is the major drawback of the DES given a critical objective of this project is to generate usable information for key stakeholders who are involved with inland waterway operations. Conversely, the IWOM is a preferable option given it relies on statistical analysis – in this sense, it is more of an open‐source solution. The IWOM uses linear regression to determine key variables affecting variation in lockage time. The final model accounts for over two‐thirds of the observed variation in lockage times from 2002‐2012, which is our study period. Practically, this means that the difference between predicted values and observed delay times is significantly less than how the delays vary around the composite average seen in the river system (R2 = 0.69). The IWOM confirms that variations in river conditions significantly affect vessel travel times. For example, river discharge ‐ the direction a vessel moves up or down a river ‐ meaningfully influences lockage times. The freight amount a vessel carries, which is represented by the amount of draft and newness of a vessel, influences lockage times. Larger vessels with more draft tend to wait longer and take longer to complete their lockage. The IWOM is less successful at predicting delay times. Because there is greater instability in this data only a modest amount of variation is explained by the model (R2 = 0.23). This, in turn, partly reflects in spillover from one vessel to the next that is difficult for the simulation to impose and account for therefore requiring additional logic. Once completed, the IWOM was used to parameterize a simulation model. This provided a graphical representation of vessels moving along the river. Users have the capability of adjusting the effects of different variables to anticipate how the system may react, and what changes in vessel traffic patterns emerge. This information will be of great use for stakeholders wanting to gain a better understanding of what conditions lockage times will increase or decrease, why delays emerge, and consequently how these impact traffic flows on the river. In programming a simulation model, users are able to visualize and intuit what causes vessel travel times to vary. Although the regression model accomplishes this, for many users this would prove unwieldy and difficult to grasp beyond a conceptual, abstract level. Matching up regression results with a visual counterpart lets users gain immediate and intimate knowledge of river and vessel behavior – this in turn can positively affect shipper and carrier modal choices. The report concludes with some recommendations for IWOM implementation and thoughts on future research needs. Also discussed are the implications results from the present study have for improving our ability to safely, securely, and swiftly move freight on the inland waterways network

    Methods of Attaching or Grafting Carbon Nanotubes to Silicon Surfaces and Composite Structures Derived Therefrom

    Get PDF
    The present invention is directed toward methods of attaching or grafting carbon nanotubes (CNTs) to silicon surfaces. In some embodiments, such attaching or grafting occurs via functional groups on either or both of the CNTs and silicon surface. In some embodiments, the methods of the present invention include: (1) reacting a silicon surface with a functionalizing agent (such as oligo(phenylene ethynylene)) to form a functionalized silicon surface; (2) dispersing a quantity of CNTs in a solvent to form dispersed CNTs; and (3) reacting the functionalized silicon surface with the dispersed CNTs. The present invention is also directed to the novel compositions produced by such methods

    Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Get PDF
    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization

    Developing a Baseline for Customer Satisfaction in the Kentucky Transportation Cabinet\u27s Department of Vehicle Regulation

    Get PDF
    Among the Kentucky Transportation Cabinet’s (KYTC) business units, the Department of Vehicle Regulation (DVR) has the most interactions with members of the public and other government agencies. Given its high profile and public visibility, it is critical for the department to provide high-quality customer service. Lacking data on customer perceptions of DVR’s level of service, the department commissioned researchers at the Kentucky Transportation Center (KTC) to conduct a baseline and rebaseline customer satisfaction surveys. Along with administering surveys to external customers, KTC’s research team also polled DVR staff to gauge employee morale and identify areas which could be improved. Approximately 90% of departmental staff believe that DVR provides a high level of customer service, and most viewed the department’s divisions favorably. Staff, however, noted the importance of fostering an open, equitable, and collaborative workspace as well as the importance of having up-to-date technological tools to perform daily job functions. With respect to the baseline and rebaseline external customer surveys, this study measured a slight decline in overall customer satisfaction. In the baseline survey, 81% of respondents were very or somewhat satisfied with the service they received; in the rebaseline survey 77% said the same. Regression modeling found a strong negative relationship between number of call escalations (i.e., call transfers) and customer satisfaction; call duration had a smaller but negative impact on customer satisfaction. Survey respondents expressed a growing preference for using electronic means (email, website) to interact with DVR. Moving forward, it will be critical for DVR to dedicate resources to improving its website and streamlining other modes of electronic communication, reducing the number of call escalations, and shortening average call durations – particularly hold times

    Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal

    Get PDF
    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration

    Inactivation of SNF5 cooperates with p53 loss to accelerate tumor formation in Snf5 +/− ; p53 +/− mice

    Get PDF
    Malignant rhabdoid tumors (MRTs) are poorly differentiated pediatric cancers that arise in various anatomical locations and have a very poor outcome. The large majority of these malignancies are caused by loss of function of the SNF5/INI1 component of the SWI/SNF chromatin remodeling complex. However, the mechanism of tumor development associated with SNF5 loss remains unclear. Multiple studies have demonstrated a role for SNF5 in the regulation of cyclin D1, p16INK4A and pRbf activities suggesting it functions through the SWI/SNF complex to affect transcription of genes involved in cell cycle control. Previous studies in genetically engineered mouse models (GEMM) have shown that loss of SNF5 on a p53 null background significantly accelerates tumor development. Here, we use established GEMM to further define the relationship between the SNF5 and p53 tumor suppressor pathways. Combined haploinsufficiency of p53 and Snf5 leads to decreased latency for MRTs arising in alternate anatomical locations but not for the standard facial MRTs. We also observed acceleration in the appearance of T-cell lymphomas in the p53+/-;Snf5+/- mice. Our studies suggest that loss of SNF5 activity does not bestow a selective advantage on the p53 spectrum of tumors in the p53+/-;Snf5+/- mice. However, reduced p53 expression specifically accelerated the growth of a subset of MRTs in these mice

    The High Velocity Gas toward Messier 5: Tracing Feedback Flows in the Inner Galaxy

    Full text link
    We present Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS E140M) observations of the post-asymptotic giant branch star ZNG 1 in the globular cluster Messier 5 (l=3.9, b=+47.7; d=7.5 kpc, z=+5.3 kpc). High velocity absorption is seen in C IV, Si IV, O VI, and lower ionization species at LSR velocities of -140 and -110 km/s. We conclude that this gas is not circumstellar on the basis of photoionization models and path length arguments. Thus, the high velocity gas along the ZNG 1 sight line is the first evidence that highly-ionized HVCs can be found near the Galactic disk. We measure the metallicity of these HVCs to be [O/H]=+0.22\pm0.10, the highest of any known HVC. Given the clouds' metallicity and distance constraints, we conclude that these HVCs have a Galactic origin. This sight line probes gas toward the inner Galaxy, and we discuss the possibility that these HVCs may be related to a Galactic nuclear wind or Galactic fountain circulation in the inner regions of the Milky Way.Comment: 23 pages, 11 figures, 7 table

    Expression Quantitative Trait Loci and Receptor Pharmacology Implicate Arg1 and the GABA-A Receptor as Therapeutic Targets in Neuroblastoma

    Get PDF
    SummaryThe development of targeted therapeutics for neuroblastoma, the third most common tumor in children, has been limited by a poor understanding of growth signaling mechanisms unique to the peripheral nerve precursors from which tumors arise. In this study, we combined genetics with gene-expression analysis in the peripheral sympathetic nervous system to implicate arginase 1 and GABA signaling in tumor formation in vivo. In human neuroblastoma cells, either blockade of ARG1 or benzodiazepine-mediated activation of GABA-A receptors induced apoptosis and inhibited mitogenic signaling through AKT and MAPK. These results suggest that ARG1 and GABA influence both neural development and neuroblastoma and that benzodiazepines in clinical use may have potential applications for neuroblastoma therapy

    Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    Get PDF
    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retropropulsion (SRP) rocket system for the final soft landing. A three engine retropropulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn Research Center's 1- by 1-ft (11) Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70deg Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a SRP system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retropropulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retropropulsion induced shock waves and retropropulsion for Earth launched booster recovery are also addressed
    corecore