2,257 research outputs found
The adequacy of the present practice in dynamic aggregated modelling of wind farm systems
Large offshore wind farms are usually composed of several hundred individual wind turbines, each turbine having its own complex set of dynamics. The analysis of the dynamic interaction between wind turbine generators (WTG), interconnecting ac cables, and voltage source converter (VSC) based High Voltage DC (HVDC) system is difficult because of the complexity and the scale of the entire system. The detailed modelling and modal analysis of a representative wind farm system reveal the presence of several critical resonant modes within the system. Several of these modes have frequencies close to harmonics of the power system frequency with poor damping. From a computational perspective the aggregation of the physical model is necessary in order to reduce the degree of complexity to a practical level. This paper focuses on the present practices of the aggregation of the WTGs and the collection system, and their influence on the damping and frequency characteristics of the critical oscillatory modes. The effect of aggregation on the critical modes are discussed using modal analysis and dynamic simulation. The adequacy of aggregation method is discussed
Direct Evidence for a Magnetic f-electron Mediated Cooper Pairing Mechanism of Heavy Fermion Superconductivity in CeCoIn5
To identify the microscopic mechanism of heavy-fermion Cooper pairing is an
unresolved challenge in quantum matter studies; it may also relate closely to
finding the pairing mechanism of high temperature superconductivity.
Magnetically mediated Cooper pairing has long been the conjectured basis of
heavy-fermion superconductivity but no direct verification of this hypothesis
was achievable. Here, we use a novel approach based on precision measurements
of the heavy-fermion band structure using quasiparticle interference (QPI)
imaging, to reveal quantitatively the momentum-space (k-space) structure of the
f-electron magnetic interactions of CeCoIn5. Then, by solving the
superconducting gap equations on the two heavy-fermion bands
with these magnetic interactions as mediators of the
Cooper pairing, we derive a series of quantitative predictions about the
superconductive state. The agreement found between these diverse predictions
and the measured characteristics of superconducting CeCoIn5, then provides
direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the
f-electron magnetism.Comment: 19 pages, 4 figures, Supplementary Information: 31 pages, 5 figure
Thermodynamics of an attractive 2D Fermi gas
Thermodynamic properties of matter are conveniently expressed as functional
relations between variables known as equations of state. Here we experimentally
determine the compressibility, density and pressure equations of state for an
attractive 2D Fermi gas in the normal phase as a function of temperature and
interaction strength. In 2D, interacting gases exhibit qualitatively different
features to those found in 3D. This is evident in the normalized density
equation of state, which peaks at intermediate densities corresponding to the
crossover from classical to quantum behaviour.Comment: Contains minor revision
A note on leapfrogging vortex rings
In this paper we provide examples, by numerical simulation using the Navier-Stokes equations for axisymmetric laminar flow, of the 'leapfrogging' motion of two, initially identical, vortex rings which share a common axis of symmetry. We show that the number of clear passes that each ring makes through the other increases with Reynolds number, and that as long as the configuration remains stable the two rings ultimately merge to form a single vortex ring
Guanidinium 5,5âČâAzotetrazolate: A Colorful Chameleon for HalogenâFree Smoke Signals
A progressive halogenâfree multicolored smoke system to obtain white, red, violet, yellow, green, and blue smoke color is presented. The nitrogenârich salt guanidinium 5,5âČâazotetrazolate (GZT), which is usually applied as a gas generator or propellant ingredient, was combined with different smoke dyes (Solvent Redâ
1, Solvent Violetâ
47, Solvent Greenâ
3, Solvent Yellowâ
33). These twoâcomponent smoke mixtures offer a convenient and safe multicolor approach without the need for potassium chlorate or any other hazardous material. The common smoke characteristics with respect to burn time/burn rate, yield factor, transfer rate, as well as energetic properties were determined and compared with classic chlorateâbased formulations currently used. To the best of our knowledge, nothing comparable is known in the literature and a completely new research area in modern pyrotechnics is opened
The relationship between the optical Halpha filaments and the X-ray emission in the core of the Perseus cluster
NGC 1275 in the centre of the Perseus cluster of galaxies, Abell 426, is
surrounded by a spectacular filamentary Halpha nebula. Deep Chandra X-ray
imaging has revealed that the brighter outer filaments are also detected in
soft X-rays. This can be due to conduction and mixing of the cold gas in the
filaments with the hot, dense intracluster medium. We show the correspondence
of the filaments in both wavebands and draw attention to the relationship of
two prominent curved NW filaments to an outer, buoyant radio bubble seen as a
hole in the X-ray image. There is a strong resemblance in the shape of the hole
and the disposition of the filaments to the behaviour of a large air bubble
rising in water. If this is a correct analogy, then the flow is laminar and the
intracluster gas around this radio source is not turbulent. We obtain a limit
on the viscosity of this gas.Comment: Accepted for publication in MNRA
Apoptosis Is the Essential Target of Selective Pressure against p53, whereas Loss of Additional p53 Functions Facilitates Carcinoma Progression
The high frequency of p53 mutation in human cancers indicates the important role of p53 in suppressing tumorigenesis. It is well established that the p53 regulates multiple, distinct, cellular functions such as cell cycle arrest and apoptosis. Despite intensive studies, little is known about which function is essential, or if multiple pathways are required, for p53-dependent tumor suppression in vivo. Using a mouse brain carcinoma model that shows high selective pressure for p53 inactivation, we found that even partially abolishing p53-dependent apoptosis by Bax inactivation was sufficient to significantly reduce the selective pressure for p53 loss. This finding is consistent with previous reports that apoptosis is the primary p53 function selected against during EΌ-myc induced mouse lymphoma progression. However, unlike observed in the EΌ-myc induced lymphoma model, attenuation of apoptosis is not sufficient to phenocopy the aggressive tumor progression associated with complete loss of p53 activity. We conclude apoptosis is the primary tumor suppressive p53 function and the ablation of additional p53 pleiotropic effects further exacerbates tumor progression
Equation level matching: An extension of the method of matched asymptotic expansion for problems of wave propagation
We introduce an alternative to the method of matched asymptotic expansions.
In the "traditional" implementation, approximate solutions, valid in different
(but overlapping) regions are matched by using "intermediate" variables. Here
we propose to match at the level of the equations involved, via a "uniform
expansion" whose equations enfold those of the approximations to be matched.
This has the advantage that one does not need to explicitly solve the
asymptotic equations to do the matching, which can be quite impossible for some
problems. In addition, it allows matching to proceed in certain wave situations
where the traditional approach fails because the time behaviors differ (e.g.,
one of the expansions does not include dissipation). On the other hand, this
approach does not provide the fairly explicit approximations resulting from
standard matching. In fact, this is not even its aim, which to produce the
"simplest" set of equations that capture the behavior
- âŠ