3,847 research outputs found

    The adequacy of the present practice in dynamic aggregated modelling of wind farm systems

    Get PDF
    Large offshore wind farms are usually composed of several hundred individual wind turbines, each turbine having its own complex set of dynamics. The analysis of the dynamic interaction between wind turbine generators (WTG), interconnecting ac cables, and voltage source converter (VSC) based High Voltage DC (HVDC) system is difficult because of the complexity and the scale of the entire system. The detailed modelling and modal analysis of a representative wind farm system reveal the presence of several critical resonant modes within the system. Several of these modes have frequencies close to harmonics of the power system frequency with poor damping. From a computational perspective the aggregation of the physical model is necessary in order to reduce the degree of complexity to a practical level. This paper focuses on the present practices of the aggregation of the WTGs and the collection system, and their influence on the damping and frequency characteristics of the critical oscillatory modes. The effect of aggregation on the critical modes are discussed using modal analysis and dynamic simulation. The adequacy of aggregation method is discussed

    A Case of Keratodermia Blennorrhagica.

    Get PDF
    n/

    Bragg spectroscopy of a strongly interacting Fermi gas

    Full text link
    We present a comprehensive study of the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover in fermionic 6^6Li using Bragg spectroscopy. A smooth transition from molecular to atomic spectra is observed with a clear signature of pairing at and above unitarity. These spectra probe the dynamic and static structure factors of the gas and provide a direct link to two-body correlations. We have characterised these correlations and measured their density dependence across the broad Feshbach resonance at 834 G.Comment: Replaced with published versio

    Contact and sum-rules in a near-uniform Fermi gas at unitarity

    Full text link
    We present an experimental study of the high-energy excitation spectra of unitary Fermi gases. Using focussed beam Bragg spectroscopy, we locally probe atoms in the central region of a harmonically trapped cloud where the density is nearly uniform, enabling measurements of the dynamic structure factor for a range of temperatures both below and above the superfluid transition. Applying sum-rules to the measured Bragg spectra, we resolve the characteristic behaviour of the universal contact parameter, C{\cal C}, across the superfluid transition. We also employ a recent theoretical result for the kinetic (second-moment) sum-rule to obtain the internal energy of gases at unitarity.Comment: 5 pages, 4 figure

    Direct Evidence for a Magnetic f-electron Mediated Cooper Pairing Mechanism of Heavy Fermion Superconductivity in CeCoIn5

    Get PDF
    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,βE_k^{\alpha,\beta} with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.Comment: 19 pages, 4 figures, Supplementary Information: 31 pages, 5 figure

    Thermodynamics of an attractive 2D Fermi gas

    Full text link
    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behaviour.Comment: Contains minor revision

    America for Me : (Where the Flag is Full of Stars)

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1016/thumbnail.jp
    corecore