7,904 research outputs found

    X-Ray Synchrotron Emitting Fe-Rich Ejecta in SNR RCW 86

    Full text link
    Supernova remnants may exhibit both thermal and nonthermal X-ray emission. We present Chandra observations of RCW 86. Striking differences in the morphology of X-rays below 1 keV and above 2 keV point to a different physical origin. Hard X-ray emission is correlated fairly well with the edges of regions of radio emission, suggesting that these are the locations of shock waves at which both short-lived X-ray emitting electrons, and longer-lived radio-emitting electrons, are accelerated. Soft X-rays are spatially well-correlated with optical emission from nonradiative shocks, which are almost certainly portions of the outer blast wave. These soft X-rays are well fit with simple thermal plane-shock models. Harder X-rays show Fe K alpha emission and are well described with a similar soft thermal component, but a much stronger synchrotron continuum dominating above 2 keV, and a strong Fe K alpha line. Quantitative analysis of this line and the surrounding continuum shows that it cannot be produced by thermal emission from a cosmic-abundance plasma; the ionization time is too short, as shown both by the low centroid energy (6.4 keV) and the absence of oxygen lines below 1 keV. Instead, a model of a plane shock into Fe-rich ejecta, with a synchrotron continuum, provides a natural explanation. This requires that reverse shocks into ejecta be accelerating electrons to energies of order 50 TeV. We show that maximum energies of this order can be produced by radiation-limited diffusive shock acceleration at the reverse shocks.Comment: ApJ, accepted; full resolution images in http://spider.ipac.caltech.edu/staff/rho/rcw86chandra.p

    Technical management techniques for identification and control of industrial safety and pollution hazards

    Get PDF
    Constructive recommendations are suggested for pollution problems from offshore energy resources industries on outer continental shelf. Technical management techniques for pollution identification and control offer possible applications to space engineering and management

    Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data

    Full text link
    Since most analysis software for genome-wide association studies (GWAS) currently exploit only unrelated individuals, there is a need for efficient applications that can handle general pedigree data or mixtures of both population and pedigree data. Even data sets thought to consist of only unrelated individuals may include cryptic relationships that can lead to false positives if not discovered and controlled for. In addition, family designs possess compelling advantages. They are better equipped to detect rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Pedigrees selected for extreme trait values often segregate a single gene with strong effect. Finally, many pedigrees are available as an important legacy from the era of linkage analysis. Unfortunately, pedigree likelihoods are notoriously hard to compute. In this paper we re-examine the computational bottlenecks and implement ultra-fast pedigree-based GWAS analysis. Kinship coefficients can either be based on explicitly provided pedigrees or automatically estimated from dense markers. Our strategy (a) works for random sample data, pedigree data, or a mix of both; (b) entails no loss of power; (c) allows for any number of covariate adjustments, including correction for population stratification; (d) allows for testing SNPs under additive, dominant, and recessive models; and (e) accommodates both univariate and multivariate quantitative traits. On a typical personal computer (6 CPU cores at 2.67 GHz), analyzing a univariate HDL (high-density lipoprotein) trait from the San Antonio Family Heart Study (935,392 SNPs on 1357 individuals in 124 pedigrees) takes less than 2 minutes and 1.5 GB of memory. Complete multivariate QTL analysis of the three time-points of the longitudinal HDL multivariate trait takes less than 5 minutes and 1.5 GB of memory

    Distributed Community Detection in Dynamic Graphs

    Full text link
    Inspired by the increasing interest in self-organizing social opportunistic networks, we investigate the problem of distributed detection of unknown communities in dynamic random graphs. As a formal framework, we consider the dynamic version of the well-studied \emph{Planted Bisection Model} \sdG(n,p,q) where the node set [n][n] of the network is partitioned into two unknown communities and, at every time step, each possible edge (u,v)(u,v) is active with probability pp if both nodes belong to the same community, while it is active with probability qq (with q<<pq<<p) otherwise. We also consider a time-Markovian generalization of this model. We propose a distributed protocol based on the popular \emph{Label Propagation Algorithm} and prove that, when the ratio p/qp/q is larger than nbn^{b} (for an arbitrarily small constant b>0b>0), the protocol finds the right "planted" partition in O(logn)O(\log n) time even when the snapshots of the dynamic graph are sparse and disconnected (i.e. in the case p=Θ(1/n)p=\Theta(1/n)).Comment: Version I

    Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases

    Get PDF
    We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d, 3He)n, D(d, t)p and 3He(d, p)4He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time-of-flight, and (2) utilizing the ratio of neutron yield to proton yield from D(d, 3He)n and 3He(d, p)4He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.Comment: 16 pages, 6 figure

    Evaluability Assessment of “Growing Healthy Communities,” a Mini-grant Program to Improve Access to Healthy Foods and Places for Physical Activity

    Get PDF
    Mini-grants have been used to stimulate multisector collaboration in support of public health initiatives by funding non-traditional partners, such as economic development organizations. Such mini-grants have the potential to increase access to healthy foods and places for physical activity through built environment change, especially in small and rural towns in the United States. Although a promising practice, few mini-grant evaluations have been done. Therefore, our purpose was to conduct an Evaluability Assessment (EA), which is a process that can help promising programs that lack evidence advance toward full-scale evaluation. Specifically, we conducted an Evaluability Assessment of a statewide mini-grant program, called “Growing Healthy Communities” (GHC), to determine if this program was ready for evaluation and identify any changes needed for future implementation and evaluation that could also inform similar programs

    Temperature measurements of fusion plasmas produced by petawatt laser-irradiated D2-3He or CD4-3He clustering gases

    Get PDF
    Two different methods have been employed to determine the plasma temperature in a laser-cluster fusion experiment on the Texas Petawatt laser. In the first, the temperature was derived from time-of-flight data of deuterium ions ejected from exploding D2 or CD4 clusters. In the second, the temperature was measured from the ratio of the rates of two different nuclear fusion reactions occurring in the plasma at the same time: D(d, 3He)n and 3He(d, p)4He. The temperatures determined by these two methods agree well, which indicates that: i) The ion energy distribution is not significantly distorted when ions travel in the disassembling plasma; ii) The kinetic energy of deuterium ions, especially the hottest part responsible for nuclear fusion, is well described by a near-Maxwellian distribution.Comment: 13 pages, 4 figure

    Two-divisibility of the coefficients of certain weakly holomorphic modular forms

    Full text link
    We study a canonical basis for spaces of weakly holomorphic modular forms of weights 12, 16, 18, 20, 22, and 26 on the full modular group. We prove a relation between the Fourier coefficients of modular forms in this canonical basis and a generalized Ramanujan tau-function, and use this to prove that these Fourier coefficients are often highly divisible by 2.Comment: Corrected typos. To appear in the Ramanujan Journa

    Ingestion of Diet Soda Before a Glucose Load Augments Glucagon-Like Peptide-1 Secretion

    Get PDF
    OBJECTIVE — The goal of this study was to determine the effect of artificial sweeteners on glucose, insulin, and glucagon-like peptide (GLP)-1 in humans. RESEARCH DESIGN AND METHODS — For this study, 22 healthy volunteers (mean age 18.5 � 4.2 years) underwent two 75-g oral glucose tolerance tests with frequent measurements of glucose, insulin, and GLP-1 for 180 min. Subjects drank 240 ml of diet soda or carbonated water, in randomized order, 10 min prior to the glucose load. RESULTS — Glucose excursions were similar after ingestion of carbonated water and diet soda. Serum insulin levels tended to be higher after diet soda, without statistical significance. GLP-1 peak and area under the curve (AUC) were significantly higher with diet soda (AUC 24.0 � 15.2 pmol/l per 180 min) versus carbonated water (AUC 16.2 � 9.0 pmol/l per 180 min; P � 0.003). CONCLUSIONS — Artificial sweeteners synergize with glucose to enhance GLP-1 release in humans. This increase in GLP-1 secretion may be mediated via stimulation of sweet-taste receptors on L-cells by artificial sweetener. Consumption of sodas containing artificial sweeteners is common practice in both children and adults. It is generally assumed that glucose metabolism is not altered because these sodas contain no or extremely few calories from carbohydrate. However, recent data obtained from animal studies demonstrate that artificial sweeteners play an active metabolic role within the gastrointestinal tract. Sweet-taste receptors, including the T1R family and �-gustducin, respond not only to caloric sugars such as sucrose but also to artificial sweeteners, including sucralose (Splenda) and acesulfame-K (1,2). In both humans and animals, these receptors have been shown to be present in glucagon-like peptide (GLP)-1–secreting L-cells of the gut mucosa as well as in lingual taste buds (3–5) and serve as critical mediators of GLP-1 secretion (5). In Diabetes Care 32:2184–2186, 2009 this study, we examined the effect of artificial sweeteners in a commercially available soft drink on glucose, insulin, and GLP-1 in humans
    corecore