5,441 research outputs found

    Black Hole Evaporation in an Expanding Universe

    Full text link
    We calculate the quantum radiation power of black holes which are asymptotic to the Einstein-de Sitter universe at spatial and null infinities. We consider two limiting mass accretion scenarios, no accretion and significant accretion. We find that the radiation power strongly depends on not only the asymptotic condition but also the mass accretion scenario. For the no accretion case, we consider the Einstein-Straus solution, where a black hole of constant mass resides in the dust Friedmann universe. We find negative cosmological correction besides the expected redshift factor. This is given in terms of the cubic root of ratio in size of the black hole to the cosmological horizon, so that it is currently of order 105(M/106M)1/3(t/14Gyr)1/310^{-5} (M/10^{6}M_{\odot})^{1/3} (t/14 {Gyr})^{-1/3} but could have been significant at the formation epoch of primordial black holes. Due to the cosmological effects, this black hole has not settled down to an equilibrium state. This cosmological correction may be interpreted in an analogy with the radiation from a moving mirror in a flat spacetime. For the significant accretion case, we consider the Sultana-Dyer solution, where a black hole tends to increase its mass in proportion to the cosmological scale factor. In this model, we find that the radiation power is apparently the same as the Hawking radiation from the Schwarzschild black hole of which mass is that of the growing mass at each moment. Hence, the energy loss rate decreases and tends to vanish as time proceeds. Consequently, the energy loss due to evaporation is insignificant compared to huge mass accretion onto the black hole. Based on this model, we propose a definition of quasi-equilibrium temperature for general conformal stationary black holes.Comment: Accepted for publication in Class.Quant.Grav., 18 pages and 3 figure

    Multiple Forms of Phospholipase D following Germination and during Leaf Development of Castor Bean

    Full text link

    Two-Dimensional Infrared Spectroscopy of Antiparallel β-Sheet Secondary Structure

    Get PDF
    We investigate the sensitivity of femtosecond Fourier transform two-dimensional infrared spectroscopy to protein secondary structure with a study of antiparallel β-sheets. The results show that 2D IR spectroscopy is more sensitive to structural differences between proteins than traditional infrared spectroscopy, providing an observable that allows comparison to quantitative models of protein vibrational spectroscopy. 2D IR correlation spectra of the amide I region of poly-L-lysine, concanavalin A, ribonuclease A, and lysozyme show cross-peaks between the IR-active transitions that are characteristic of amide I couplings for polypeptides in antiparallel hydrogen-bonding registry. For poly-L-lysine, the 2D IR spectrum contains the eight-peak structure expected for two dominant vibrations of an extended, ordered antiparallel β-sheet. In the proteins with antiparallel β-sheets, interference effects between the diagonal and cross-peaks arising from the sheets, combined with diagonally elongated resonances from additional amide transitions, lead to a characteristic “Z”-shaped pattern for the amide I region in the 2D IR spectrum. We discuss in detail how the number of strands in the sheet, the local configurational disorder in the sheet, the delocalization of the vibrational excitation, and the angle between transition dipole moments affect the position, splitting, amplitude, and line shape of the cross-peaks and diagonal peaks.

    An algorithm for counting circuits: application to real-world and random graphs

    Full text link
    We introduce an algorithm which estimates the number of circuits in a graph as a function of their length. This approach provides analytical results for the typical entropy of circuits in sparse random graphs. When applied to real-world networks, it allows to estimate exponentially large numbers of circuits in polynomial time. We illustrate the method by studying a graph of the Internet structure.Comment: 7 pages, 3 figures, minor corrections, accepted versio

    Visible Light Photo-oxidation of Model Pollutants Using CaCu3Ti4O12: An Experimental and Theoretical Study of Optical Properties, Electronic Structure, and Selectivity

    Get PDF
    [Image: see text] Charge transfer between metal ions occupying distinct crystallographic sublattices in an ordered material is a strategy to confer visible light absorption on complex oxides to generate potentially catalytically active electron and hole charge carriers. CaCu(3)Ti(4)O(12) has distinct octahedral Ti(4+) and square planar Cu(2+) sites and is thus a candidate material for this approach. The sol−gel synthesis of high surface area CaCu(3)Ti(4)O(12) and investigation of its optical absorption and photocatalytic reactivity with model pollutants are reported. Two gaps of 2.21 and 1.39 eV are observed in the visible region. These absorptions are explained by LSDA+U electronic structure calculations, including electron correlation on the Cu sites, as arising from transitions from a Cu-hybridized O 2p-derived valence band to localized empty states on Cu (attributed to the isolation of CuO(4) units within the structure of CaCu(3)Ti(4)O(12)) and to a Ti-based conduction band. The resulting charge carriers produce selective visible light photodegradation of 4-chlorophenol (monitored by mass spectrometry) by Pt-loaded CaCu(3)Ti(4)O(12) which is attributed to the chemical nature of the photogenerated charge carriers and has a quantum yield comparable with commercial visible light photocatalysts

    Measurement of the plasma astrophysical S factor for the 3He(D, p)4He reaction in exploding molecular clusters

    Get PDF
    The plasma astrophysical S factor for the 3He(D, p)4He fusion reaction was measured for the first time at temperatures of few keV, using the interaction of intense ultrafast laser pulses with molecular deuterium clusters mixed with 3He atoms. Different proportions of D2 and 3He or CD4 and 3He were mixed in the gas jet target in order to allow the measurement of the cross-section for the 3He(D, p)4He reaction. The yield of 14.7 MeV protons from the 3He(D, p)4He reaction was measured in order to extract the astrophysical S factor at low energies. Our result is in agreement with other S factor parameterizations found in the literature
    corecore