3,597 research outputs found

    Gravitational lens magnification by Abell 1689: Distortion of the background galaxy luminosity function

    Get PDF
    Gravitational lensing magnifies the luminosity of galaxies behind the lens. We use this effect to constrain the total mass in the cluster Abell 1689 by comparing the lensed luminosities of background galaxies with the luminosity function of an undistorted field. Since galaxies are assumed to be a random sampling of luminosity space, this method is not limited by clustering noise. We use photometric redshift information to estimate galaxy distance and intrinsic luminosity. Knowing the redshift distribution of the background population allows us to lift the mass/background degeneracy common to lensing analysis. In this paper we use 9 filters observed over 12 hours with the Calar Alto 3.5m telescope to determine the redshifts of 1000 galaxies in the field of Abell 1689. Using a complete sample of 151 background galaxies we measure the cluster mass profile. We find that the total projected mass interior to 0.25h^(-1)Mpc is (0.48 +/- 0.16) * 10^(15)h^(-1) solar masses, where our error budget includes uncertainties from the photometric redshift determination, the uncertainty in the off-set calibration and finite sampling. This result is in good agreement with that found by number count and shear-based methods and provides a new and independent method to determine cluster masses.Comment: 13 pages, 10 figures. Submitted to MNRAS (10/99); Replacement with 1 page extra text inc. new section, accepted by MNRA

    Tissue Cytokine Responses in Canine Visceral Leishmaniasis

    Get PDF
    To elucidate the local tissue cytokine response of dogs infected with Leishmania chagasi, cytokine mRNA levels were measured in bone marrow aspirates from 27 naturally infected dogs from Brazil and were compared with those from 5 uninfected control animals. Interferon-Îł mRNA accumulation was enhanced in infected dogs and was positively correlated with humoral (IgG1) but not with lymphoproliferative responses to Leishmania antigen in infected dogs. Increased accumulation of mRNA for interleukin (IL)4, IL-10, and IL-18 was not observed in infected dogs, and mRNA for these cytokines did not correlate with antibody or proliferative responses. However, infected dogs with detectable IL-4 mRNA had significantly more severe symptoms. IL-13 mRNA was not detectable in either control or infected dogs. These data suggest that clinical symptoms are not due to a deficiency in interferon-Îł production. However, in contrast to its role in human visceral leishmaniasis, IL-10 may not play a key immunosuppressive role in dogs

    Detection of Leishmania infantum by PCR, serology and cellular immune response in a cohort study of Brazilian dogs

    Get PDF
    The sensitivity and specificity of PCR, serology (ELISA) and lymphoproliferative response to Leishmania antigen for the detection of Leishmania infantum infection were evaluated in a cohort of 126 dogs exposed to natural infection in Brazil. For PCR, Leishmania DNA from bone-marrow was amplified with both minicircle and ribosomal primers. The infection status and time of infection of each dog were estimated from longitudinal data. The sensitivity of PCR in parasite-positive samples was 98%. However, the overall sensitivity of PCR in post-infection samples, from dogs with confirmed infection, was only 68%. The sensitivity of PCR varied during the course of infection, being highest (78–88%) 0–135 days post-infection and declining to around 50% after 300 days. The sensitivity of PCR also varied between dogs, and was highest in sick dogs. The sensitivity of serology was similar in parasite-positive (84%), PCR-positive (86%) and post-infection (88%) samples. The sensitivity of serology varied during the course of infection, being lowest at the time of infection and high (93–100%) thereafter. Problems in determining the specificity of serology are discussed. The sensitivity and specificity of cellular responsiveness were low. These data suggest that PCR is most useful in detecting active or symptomatic infection, and that serology can be a more sensitive technique for the detection of all infected dogs

    Cassiopeia A: dust factory revealed via submillimetre polarimetry

    Full text link
    If Type-II supernovae - the evolutionary end points of short-lived, massive stars - produce a significant quantity of dust (>0.1 M_sun) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type-II supernovae. In this paper we present new data which show that the submm emission from Cas A is polarised at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarised submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarisation in this way and so we attribute the excess polarised submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarised and unpolarised dust emission in the north of the remnant, where there is no contamination from foreground molecular clouds. The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which, coupled with the brief timescale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where f_pol=2-7%), or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.Comment: In press at MNRAS, 10 pages, print in colou

    Evolution of the Dark Matter Distribution with 3-D Weak Lensing

    Full text link
    We present a direct detection of the growth of large-scale structure, using weak gravitational lensing and photometric redshift data from the COMBO-17 survey. We use deep R-band imaging of two 0.25 square degree fields, affording shear estimates for over 52000 galaxies; we combine these with photometric redshift estimates from our 17 band survey, in order to obtain a 3-D shear field. We find theoretical models for evolving matter power spectra and correlation functions, and fit the corresponding shear correlation functions to the data as a function of redshift. We detect the evolution of the power at the 7.7 sigma level given minimal priors, and measure the rate of evolution for 0<z<1. We also fit correlation functions to our 3-D data as a function of cosmological parameters sigma_8 and Omega_Lambda. We find joint constraints on Omega_Lambda and sigma_8, demonstrating an improvement in accuracy by a factor of 2 over that available from 2D weak lensing for the same area.Comment: 11 pages, 4 figures; submitted to MNRA

    Measurement of intrinsic alignments in galaxy ellipticities

    Full text link
    We measure the alignment of galaxy ellipticities in the local universe over a range of scales using digitized photographic data from the SuperCOSMOS Sky Survey. We find for a magnitude cut of b_J < 20.5, corresponding to a median galaxy redshift of z = 0.1, and 2x10^6 galaxies, that the galaxy ellipticities exhibit a non-zero correlation over a range of scales between 1 and 100 arcminutes. In particular, we measure the variance of mean galaxy ellipticities, sg^2(theta), in square angular cells on the sky as a function of cell size and find it lies in the range, 2 x 10^{-4} > sg^2(theta) > 1 x 10^{-5} for cell side lengths between 15 < theta < 100 arcminutes. Considering the low median redshift of the galaxies in the sample and hence the relatively low effective cross-section for lensing of these galaxies by the large-scale structure of the Universe, we propose that we have detected an intrinsic alignment of galaxy ellipticities. We compare our results to recent analytical and numerical predictions made for the intrinsic galaxy alignment and find good agreement. We discuss the importance of these results for measuring cosmic shear from upcoming shallow surveys (e.g. Sloan Digital Sky Survey) and we outline how these measurements could possibly be used to constrain models of galaxy formation and/or measure the mass distribution in the local universe.Comment: revised, 10 pages, 16 figures, matches version accepted for publication in MNRA

    Carbonaceous aerosols in Norwegian urban areas

    Get PDF
    Little is known regarding levels and source strength of carbonaceous aerosols in Scandinavia. In the present study, ambient aerosol (PM&lt;sub&gt;10&lt;/sub&gt; and PM&lt;sub&gt;2.5&lt;/sub&gt;) concentrations of elemental carbon (EC), organic carbon (OC), water-insoluble organic carbon (WINSOC), and water-soluble organic carbon (WSOC) are reported for a curbside site, an urban background site, and a suburban site in Norway in order to investigate their spatial and seasonal variations. Aerosol filter samples were collected using tandem filter sampling to correct for the positive sampling artefact introduced by volatile and semivolatile OC. Analyses were performed using the thermal optical transmission (TOT) instrument from Sunset Lab Inc., which corrects for charring during analysis. Finally, we estimated the relative contribution of OC from wood burning based on the samples content of levoglucosan. &lt;br&gt;&lt;br&gt; Levels of EC varied by more than one order of magnitude between sites, likely due to the higher impact of vehicular traffic at the curbside and the urban background sites. In winter, the level of particulate organic carbon (OC&lt;sub&gt;&lt;i&gt;p&lt;/i&gt;&lt;/sub&gt;) at the suburban site was equal to (for PM&lt;sub&gt;10&lt;/sub&gt;) or even higher (for PM&lt;sub&gt;2.5&lt;/sub&gt;) than the levels observed at the curbside and the urban background sites. This finding was attributed to the impact of residential wood burning at the suburban site in winter, which was confirmed by a high mean concentration of levoglucosan (407 ng m&lt;sup&gt;&amp;minus;3&lt;/sup&gt;). This finding indicates that exposure to primary combustion derived OC&lt;sub&gt;&lt;i&gt;p&lt;/i&gt;&lt;/sub&gt; could be equally high in residential areas as in a city center. It is demonstrated that OC&lt;sub&gt;&lt;i&gt;p&lt;/i&gt;&lt;/sub&gt; from wood burning (OC&lt;sub&gt;wood&lt;/sub&gt;) accounted for almost all OC&lt;sub&gt;&lt;i&gt;p&lt;/i&gt;&lt;/sub&gt; at the suburban site in winter, allowing a new estimate of the ratio TC&lt;sub&gt;&lt;i&gt;p&lt;/i&gt;&lt;/sub&gt;/levoglucosan for both PM&lt;sub&gt;10&lt;/sub&gt; and PM&lt;sub&gt;2.5&lt;/sub&gt;. Particulate carbonaceous material (PCM=Organic matter+Elemental matter) accounted for 46–83% of PM&lt;sub&gt;10&lt;/sub&gt; at the sites studied, thus being the major fraction

    On the consistency of scale among experiments, theory, and simulation

    Get PDF
    As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area

    Advancing characterisation with statistics from correlative electron diffraction and X-ray spectroscopy, in the scanning electron microscope.

    Get PDF
    The routine and unique determination of minor phases in microstructures is critical to materials science. In metallurgy alone, applications include alloy and process development and the understanding of degradation in service. We develop a correlative method, exploring superalloy microstructures, which are examined in the scanning electron microscope (SEM) using simultaneous energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD). This is performed at an appropriate length scale for characterisation of carbide phases' shape, size, location, and distribution. EDS and EBSD data are generated using two different physical processes, but each provide a signature of the material interacting with the incoming electron beam. Recent advances in post-processing, driven by 'big data' approaches, include use of principal component analysis (PCA). Components are subsequently characterised to assign labels to a mapped region. To provide physically meaningful signals, the principal components may be rotated to control the distribution of variance. In this work, we develop this method further through a weighted PCA approach. We use the EDS and EBSD signals concurrently, thereby labelling each region using both EDS (chemistry) and EBSD (crystal structure) information. This provides a new method of amplifying signal-to-noise for very small phases in mapped regions, especially where the EDS or EBSD signal is not unique enough alone for classification
    • …
    corecore