737 research outputs found

    Omega-3 Fatty Acids Improve Recovery, whereas Omega-6 Fatty Acids Worsen Outcome, after Spinal Cord Injury in the Adult Rat

    Get PDF
    Spinal cord injury (SCI) is a cause of major neurological disability, and no satisfactory treatment is currently available. Evidence suggests that polyunsaturated fatty acids (PUFAs) could target some of the pathological mechanisms that underlie damage after SCI. We examined the effects of treatment with PUFAs after lateral spinal cord hemisection in the rat. The ω-3 PUFAs α-linolenic acid and docosahexaenoic acid (DHA) injected 30 min after injury induced significantly improved locomotor performance and neuroprotection, including decreased lesion size and apoptosis and increased neuronal and oligodendrocyte survival. Evidence showing a decrease in RNA/DNA oxidation suggests that the neuroprotective effect of ω-3 PUFAs involved a significant antioxidant function. In contrast, animals treated with arachidonic acid, an ω-6 PUFA, had a significantly worse outcome than controls. We confirmed the neuroprotective effect of ω-3 PUFAs by examining the effects of DHA treatment after spinal cord compression injury. Results indicated that DHA administered 30 min after spinal cord compression not only greatly increased survival of neurons but also resulted in significantly better locomotor performance for up to 6 weeks after injury. This report shows a striking difference in efficacy between the effects of treatment with ω-3 and ω-6 PUFAs on the outcome of SCI, with ω-3 PUFAs being neuroprotective and ω-6 PUFAs having a damaging effect. Given the proven clinical safety of ω-3 PUFAs, our observations show that these PUFAs have significant therapeutic potential in SCI. In contrast, the use of preparations enriched in ω-6 PUFAs after injury could worsen outcome after SCI

    Relativistic J-matrix method

    Get PDF
    The relativistic version of the J-matrix method for a scattering problem on the potential vanishing faster than the Coulomb one is formulated. As in the non-relativistic case it leads to a finite algebraic eigenvalue problem. The derived expression for the tangent of phase shift is simply related to the non-relativistic case formula and gives the latter as a limit case. It is due to the fact that the used basis set satisfies the ``kinetic balance condition''.Comment: 21 pages, RevTeX, accepted for publication in Phys. Rev.

    Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu

    Get PDF
    Relativistic basis sets of double-zeta, triple-zeta, and quadruple-zeta quality have been optimized for the lanthanide elements La-Lu. The basis sets include SCF exponents for the occupied spinors and for the 6p shell, exponents of correlating functions for the valence shells (4f, 5d and 6s) and the outer core shells (4d, 5s and 5p), and diffuse functions, including functions for dipole polarization of the 4f shell. A finite nuclear size was used in all optimizations. The basis sets are illustrated by calculations on YbF. Prescriptions are given for constructing contracted basis sets. The basis sets are available as an internet archive and from the Dirac program web site, http://dirac. chem. sdu. dk. © 2010 The Author(s)

    Coordinate-space approach to the bound-electron self-energy: Self-Energy screening calculation

    Get PDF
    The self-energy screening correction is evaluated in a model in which the effect of the screening electron is represented as a first-order perturbation of the self energy by an effective potential. The effective potential is the Coulomb potential of the spherically averaged charge density of the screening electron. We evaluate the energy shift due to a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron screening a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron, for nuclear charge Z in the range 5≤Z≤925 \le Z\le 92. A detailed comparison with other calculations is made.Comment: 54 pages, 10 figures, 4 table

    , Nuclear quadrupole moment of 139La from relativistic electronic structure calculations of the electric field gradients in LaF, LaCl, LaBr and LaI

    Get PDF
    Relativistic coupled cluster theory is used to determine accurate electric field gradients in order to provide a theoretical value for the nuclear quadrupole moment of La139. Here we used the diatomic lanthanum monohalides LaF, LaCl, LaBr, and LaI as accurate nuclear quadrupole coupling constants are available from rotational spectroscopy by Rubinoff [J. Mol. Spectrosc. 218, 169 (2003)]. The resulting nuclear quadrupole moment for La139 (0.200±0.006 barn) is in excellent agreement with earlier work using atomic hyperfine spectroscopy [0.20 (1) barn]. © 2007 American Institute of Physics

    Radiative transition rates and collision strengths for Si II

    Full text link
    Aims. This work reports radiative transition rates and electron impact excitation collision strengths for levels of the 3s23p, 3s3p2, 3s24s, and 3s23d configurations of Siii. Methods. The radiative data were computed using the Thomas-Fermi-Dirac-Amaldi central potential, but with the modifications introduced by Bautista (2008) that account for the effects of electron-electron interactions. We also introduce new schemes for the optimization of the variational parameters of the potential. Additional calculations were carried out with the Relativistic Hartree-Fock and the multiconfiguration Dirac-Fock methods. Collision strengths in LS-coupling were calculated in the close coupling approximation with the R-matrix method. Then, fine structure collision strengths were obtained by means of the intermediate-coupling frame transformation (ICFT) method which accounts for spin-orbit coupling effects. Results. We present extensive comparisons between the results of different approximations and with the most recent calculations and experiment available in the literature. From these comparisons we derive a recommended set of gf- values and radiative transition rates with their corresponding estimated uncertainties. We also study the effects of different approximations in the representation of the target ion on the electron-impact collision strengths. Our most accurate set of collision strengths were integrated over a Maxwellian distribution of electron energies and the resulting effective collision strengths are given for a wide range of temperatures. Our results present significant differences from recent calculations with the B-spline non-orthogonal R-matrix method. We discuss the sources of the differences.Comment: 6 figures, 5 tables within text, 2 electronic table

    Scattering length of the ground state Mg+Mg collision

    Get PDF
    We have constructed the X 1SIGMAg+ potential for the collision between two ground state Mg atoms and analyzed the effect of uncertainties in the shape of the potential on scattering properties at ultra-cold temperatures. This potential reproduces the experimental term values to 0.2 inverse cm and has a scattering length of +1.4(5) nm where the error is prodominantly due to the uncertainty in the dissociation energy and the C6 dispersion coefficient. A positive sign of the scattering length suggests that a Bose-Einstein condensate of ground state Mg atoms is stable.Comment: 15 pages, 3 figures, Submitted Phys. Rev.

    Microwave and Physical Electronics

    Get PDF
    Contains reports on six research projects
    • …
    corecore