5,984 research outputs found

    On open quantum systems, effective Hamiltonians and device characterization

    Get PDF
    High fidelity models, which support accurate device characterization and correctly account for environmental effects, are crucial to the engineering of scalable quantum technologies. As it ensures positivity of the density matrix, one preferred model for open systems describes the dynamics with a master equation in Lindblad form. The Linblad operators are rarely derived from first principles, resulting in dynamical models which miss those additional terms that must generally be added to bring the master equation into Lindblad form, together with concomitant other terms that must be assimilated into an effective Hamiltonian. In first principles derivations such additional terms are often cancelled (countered), frequently in an ad hoc manner. In the case of a Superconducting Quantum Interference Device (SQUID) coupled to an Ohmic bath, the resulting master equation implies the environment has a significant impact on the system's energy. We discuss the prospect of keeping or cancelling this impact; and note that, for the SQUID, measuring the magnetic susceptibility under control of the capacitive coupling strength and the externally applied flux, results in experimentally measurable differences between models. If this is not done correctly, device characterization will be prone to systemic errors.Comment: 5 pages, 3 figure

    Incremental Grid-like Layout Using Soft and Hard Constraints

    Full text link
    We explore various techniques to incorporate grid-like layout conventions into a force-directed, constraint-based graph layout framework. In doing so we are able to provide high-quality layout---with predominantly axis-aligned edges---that is more flexible than previous grid-like layout methods and which can capture layout conventions in notations such as SBGN (Systems Biology Graphical Notation). Furthermore, the layout is easily able to respect user-defined constraints and adapt to interaction in online systems and diagram editors such as Dunnart.Comment: Accepted to Graph Drawing 201

    Surface Hydrogen Modeling of Super Soft X-ray Sources: Are They Supernova Ia Progenitors?

    Full text link
    Nova explosions occur on the white dwarf (WD) component of a Cataclysmic Variable stellar system which is accreting matter lost by a companion. A Type Ia supernova explosion is thought to result when a WD, in a similar binary configuration, grows in mass to the Chandrasekhar Limit. Here, we present calculations of accretion of Solar matter, at a variety of mass accretion rates, onto hot (2.3×1052.3 \times 10^{5}K), luminous (30L⊙_\odot), massive (1.25M⊙_\odot, 1.35M⊙_\odot) Carbon-Oxygen WDs. In contrast to our nova simulations where the WD has a low initial luminosity and a thermonuclear runaway (TNR) occurs and ejects material, these simulations do not eject material (or only a small fraction of the accreted material) and the WD grows in mass. A hydrogen TNR does not occur because hydrogen fuses to helium in the surface layers, and we call this process Surface Hydrogen Burning (SHB). As the helium layer grows in mass, it gradually fuses either to carbon and oxygen or to more massive nuclei depending on the WD mass and mass accretion rate. If such a WD were to explode in a SN Ia event, therefore, it would show neither hydrogen nor helium in its spectrum as is observed. Moreover, the luminosities and effective temperatures of our simulations agree with the observations of some of the Super Soft X-ray Binary Sources and, therefore, our results strengthen previous speculation that some of them (CAL 83 and CAL 87 for example) are probably progenitors of SN Ia explosions. Finally, we have achieved SHB for values of the mass accretion rate that almost span the observed values of the Cataclysmic Variables.Comment: Accepted by APJL, 4 pages, 1 figure, LaTex (uses emulateapj.sty

    Search for Sterile Neutrinos with a Radioactive Source at Daya Bay

    Get PDF
    The far site detector complex of the Daya Bay reactor experiment is proposed as a location to search for sterile neutrinos with > eV mass. Antineutrinos from a 500 kCi 144Ce-144Pr beta-decay source (DeltaQ=2.996 MeV) would be detected by four identical 20-ton antineutrino targets. The site layout allows flexible source placement; several specific source locations are discussed. In one year, the 3+1 sterile neutrino hypothesis can be tested at essentially the full suggested range of the parameters Delta m^2_{new} and sin^22theta_{new} (90% C.L.). The backgrounds from six nuclear reactors at >1.6 km distance are shown to be manageable. Advantages of performing the experiment at the Daya Bay far site are described

    The effect of clinical decision making for initiation of systemic anticancer treatments in response to the COVID-19 pandemic in England: a retrospective analysis

    Get PDF
    BACKGROUND: Cancer services worldwide had to adapt in response to the COVID-19 pandemic to minimise risk to patients and staff. We aimed to assess the national impact of COVID-19 on the prescribing of systemic anticancer treatment in England, immediately after lockdown and after the introduction of new treatments to reduce patient risk. METHODS: We did a retrospective analysis using data from a central National Health Service England web database mandated for clinicians to register intention to start all new systemic anticancer treatments approved for use in England since 2016. We analysed the monthly number of treatment registrations in April, 2020, after the implementation of societal lockdown on March 23, 2020, and after implementation of treatment options to reduce patient risk such as oral or less immunosuppressive drugs, in May and June, 2020. We compared the number of registrations in April-June, 2020, with the mean number of registrations and SD during the previous 6 months of unaffected cancer care (September, 2019, to February, 2020). We calculated the percentage change and absolute difference in SD units for the number of registrations overall, by tumour type, and by type and line of therapy. FINDINGS: In April, 2020, 2969 registrations were recorded, representing 1417 fewer registrations than in the control period (monthly mean 4386; 32% reduction, absolute difference 4·2 SDs, p<0·0001). In May, 2020, total registrations increased to 3950, representing a 10% reduction compared with the control period (absolute difference 1·3 SDs, p<0·0001). In June, 2020, 5022 registrations were recorded, representing a 15% increase compared with the control period (absolute difference 1·9 SDs; p<0·0001]). INTERPRETATION: After the onset of the COVID-19 pandemic, there was a reduction in systemic anticancer treatment initiation in England. However, following introduction of treatment options to reduce patient risk, registrations began to increase in May, 2020, and reached higher numbers than the pre-pandemic mean in June, 2020, when other clinical and societal risk mitigation factors (such as telephone consultations, facemasks and physical distancing) are likely to have contributed. However, outcomes of providing less treatment or delaying treatment initiation, particularly for advanced cancers and neoadjuvant therapies, require continued assessment. FUNDING: None

    White Paper: Measuring the Neutrino Mass Hierarchy

    Full text link
    This white paper is a condensation of a report by a committee appointed jointly by the Nuclear Science and Physics Divisions at Lawrence Berkeley National Laboratory (LBNL). The goal of this study was to identify the most promising technique(s) for resolving the neutrino mass hierarchy. For the most part, we have relied on calculations and simulations presented by the proponents of the various experiments. We have included evaluations of the opportunities and challenges for these experiments based on what is available already in the literature.Comment: White paper prepared for Snowmass-201

    Ultrasonic roll bite measurements in cold rolling: Contact length and strip thickness

    Get PDF
    In cold rolling of thin metal strip, contact conditions between the work rolls and the strip are of great importance: roll deformations and their effect on strip thickness variation may lead to strip flatness defects and thickness inhomogeneity. To control the process, online process measurements are usually carried out; such as the rolling load, forward slip and strip tensions at each stand. Shape defects of the strip are usually evaluated after the last stand of a rolling mill thanks to a flatness measuring roll. However, none of these measurements is made within the roll bite itself due to the harsh conditions taking place in that area. This paper presents a sensor capable of monitoring strip thickness variations as well as roll bite length in situ and in real time. The sensor emits ultrasonic pulses that reflect from the interface between the roll and the strip. Both the time-of-flight of the pulses and the reflection coefficient (the ratio of the amplitude of the reflected signal to that of the incident signal) are recorded. The sensor system was incorporated into a work roll and tested on a pilot rolling mill. Measurements were taken as steel strips were rolled under several lubrication conditions. Strip thickness variation and roll-bite length obtained from the experimental data agree well with numerical results computed with a cold rolling model in the mixed lubrication regime

    Auto-calibration of ultrasonic lubricant-film thickness measurements

    Get PDF
    The measurement of oil film thickness in a lubricated component is essential information for performance monitoring and design. It is well established that such measurements can be made ultrasonically if the lubricant film is modelled as a collection of small springs. The ultrasonic method requires that component faces are separated and a reference reflection recorded in order to obtain a reflection coefficient value from which film thickness is calculated. The novel and practically useful approach put forward in this paper and validated experimentally allows reflection coefficient measurement without the requirement for a reference. This involves simultaneously measuring the amplitude and phase of an ultrasonic pulse reflected from a layer. Provided that the acoustic properties of the substrate are known, the theoretical relationship between the two can be fitted to the data in order to yield reflection coefficient amplitude and phase for an infinitely thick layer. This is equivalent to measuring a reference signal directly, but importantly does not require the materials to be separated. The further valuable aspect of this approach, which is demonstrated experimentally, is its ability to be used as a self-calibrating routine, inherently compensating for temperature effects. This is due to the relationship between the amplitude and phase being unaffected by changes in temperature which cause unwanted changes to the incident pulse. Finally, error analysis is performed showing how the accuracy of the results can be optimized. A finding of particular significance is the strong dependence of the accuracy of the technique on the amplitude of reflection coefficient input data used. This places some limitations on the applicability of the technique. © 2008 IOP Publishing Ltd
    • …
    corecore