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High fidelity models, which are able to both support accurate device characterization and correctly account for
environmental effects, are crucial to the engineering of scalable quantum technologies. As it ensures positivity
of the density matrix, one preferred model of open systems describes the dynamics with a master equation in
Lindblad form. In practice, Linblad operators are rarely derived from first principles, and often a particular form of
annihilator is assumed. This results in dynamical models that miss those additional terms which must generally be
added for the master equation to assume the Lindblad form, together with the other concomitant terms that must
be assimilated into an effective Hamiltonian to produce the correct free evolution. In first principles derivations,
such additional terms are often canceled (or countered), frequently in a somewhat ad hoc manner, leading to
a number of competing models. Whilst the implications of this paper are quite general, to illustrate the point
we focus here on an example anharmonic system; specifically that of a superconducting quantum interference
device (SQUID) coupled to an Ohmic bath. The resulting master equation implies that the environment has a
significant impact on the system’s energy; we discuss the prospect of keeping or canceling this impact and note
that, for the SQUID, monitoring the magnetic susceptibility under control of the capacitive coupling strength and
the externally applied flux results in experimentally measurable differences between a number of these models.
In particular, one should be able to determine whether a squeezing term of the form X̂P̂ + P̂ X̂ should be present
in the effective Hamiltonian or not. If model generation is not performed correctly, device characterization will
be prone to systemic errors.

DOI: 10.1103/PhysRevB.96.134520

I. INTRODUCTION

For any complex system, if device characterization and
design engineering are to be meaningful notions, it is necessary
to have access to models that faithfully describe device
behavior and performance when subjected to a wide range
of environmental conditions. The ability to integrate billions
of CMOS transistors onto a single chip relies on careful device
characterization as well as knowledge of likely environmental
conditions. A chip meant for liquid Helium applications will
be characterized by lower junction capacitances, as a result of
carrier freeze-out [1], whilst, if intended for space applications,
it must be designed with radiation hardness in mind [2].
Successful quantum technologies will be no different in this
regard.

In the quest to build a scalable quantum processor from
Josephson-junction-based superconducting circuits, signifi-
cant developments have been made recently, including en-
hanced coherence times [3], high fidelity state-preparation
and measurement [4], and the demonstration of two-qubit
gates [5]. To facilitate the fabrication of functional circuits,
future qubits must be capable of long- and short-term storage,
be frequency tunable, be capable of communication over
both short and long ranges, and possess tunable couplings
[6]. Decoherence presents a formidable obstacle to achieving
this for superconducting qubits. As a result, the maintenance
of a long coherence time has become a key problem in
superconductor qubit research, making the need for a better

*v.m.dwyer@lboro.ac.uk

understanding of different types of environment a similarly
key concern.

Until relatively recently, it had been assumed that the
connection to ground of floating flux-qubits was poor, and that
such qubits were immune to capacitive coupling. However, a
recent study [6] has demonstrated the reactance to ground
can become sizable, and that not protecting against this
decoherence channel may explain some of the short coherence
times obtained previously.

The equivalent design paradigm for a classical semicon-
ductor (CMOS) computer allows a very detailed simulation
of critical-path devices in a variety of environments (at
fast/typical/slow mobility process corners, under mechanical
stress, flicker or thermal noise, etc.) as well in a range of
operational conditions (e.g., IR-drop on power lines) and
including a number of reliability considerations (e.g., metal
migration) before it is committed to silicon [7]. In the
particular case of capacitive coupling, the contrast of the
superconducting qubit to silicon CMOS is stark; indeed,
CMOS is the chosen platform because of its excellent noise
immunity. Understanding the impact of an environment is
necessary for accurate characterization of a given quantum
device, as devices which are not characterized under the same
environmental conditions may not easily be compared, and
a device characterized in a test environment may behave
differently when in use.

II. THE OPEN QUANTUM SYSTEM

A common means of modeling open quantum systems is
with reduced master equations [8–18], as these approximate
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the dynamics of the system of interest without the need
to model the environment itself, and, because it guarantees
certain nice properties (such as conservation of probability and
complete positivity of the reduced (system) density matrix, and
natural unravellings), it is usual to cast the master equation
into Lindblad form [19], in which the Lindblad operators
represent the action of the environment on the system. Exactly
which operators to use usually involves a carefully constructed
analysis of the system + environment, followed by a tracing
out of environmental degrees of freedom. This process requires
a number of approximations to be made, as well as some
decisions about the form of the final equation. Most common
is the Born-Markov (BM) approximation, which assumes a
weak coupling between a quantum system and an environment,
assumed to have no long-term memory. However, the BM
approximation alone will not generally yield a quantum master
equation of the required form. As a consequence, it is common
to manipulate the resulting BM master equation by adding
those terms necessary to complete the Lindblad structure, and
by either absorbing any terms that present as free evolution
into an effective system Hamiltonian, or by canceling them
with heuristic counter terms.

The simplest example is that of quantum Brownian motion
(QBM), with a harmonic potential, coupled to an Ohmic bath
through the system’s position operator x̂, see, e.g., Ref. [9].
Here, a Lindblad master equation for the reduced density
matrix ρ̂S can be created from the Born-Markov development
by (i) adding a term of the form Dpp[p̂,[p̂,ρ̂S]], where p̂

is the canonical conjugate momentum to x̂ ([x̂,p̂] = ih̄),
and Dpp is inversely proportional to the bath temperature
T ; and (ii) by moving terms proportional to [x̂2,ρ̂S] (the
Lamb shift term) and μ[x̂p̂ + x̂p̂,ρ̂S] (a squeezing term,
where μ depends on system-bath coupling strength) into
an effective system Hamiltonian. The justification for the
addition of the Dpp[p̂,[p̂,ρ̂S]] term is often that, in the
high T limit, it is small and so amounts to a minimally
invasive means of ensuring Lindblad form. The Lamb shift
term [x̂2,ρ̂S] is generally canceled by the inclusion of an
identical (counter) term in either the system or interaction
Hamiltonian on the grounds that it otherwise constitutes an
unphysical frequency renormalization. With these changes, the
QBM master equation takes on Lindblad form, with a single,
generalized annihilator Lindblad, b̂ = c1x̂ + c2p̂ [9].

Up to this point, what has been described is the standard
high-temperature (Lindblad) version of the Caldiera-Leggett
equation [20], where it is also argued that, for many sys-
tems, a counter term arises to cancel the Lamb shift in a
truly detailed analysis of microscopic dynamics. The final
(squeezing term) μ[x̂p̂ + p̂x̂,ρ̂], has been discussed in the
literature on a number of occasions. On one hand, its presence
(uncountered) in an effective Hamiltonian is necessary to
ensure translational invariance [21], that Erhenfest’s theorem
is satisfied [19,21–24], and a correct quantum to classical
transition [25–29].

On the other hand, the inclusion of a counterterm −λ[x̂p̂ +
p̂x̂,ρ̂] in the system Hamiltonian has occasionally been part
of an ansatz, which assumes the most general second order
Lindblad master equation possible, using a single (generalized
annihilator) Lindblad, first order in system variables x̂ and
p̂, together with a general second order Hamiltonian. Its

properties have been investigated as a function of λ. Setting
λ = μ cancels the squeezing term completely, while λ �= 0
(providing a partial cancellation) gives additional flexibility
to add desirable properties to the master equation, such
as reasonable low T behavior [21,24]. This does, however,
sacrifice translational invariance [19] and Ehrenfest [23].

The problems in the derivation of the Lindblads, appropriate
to a particular system-environment interaction, are clearer still
when considering a particle in an anharmonic potential, such
as is the case for a superconducting quantum interference
device (SQUID). Here, the heuristic adding/canceling of terms
becomes much more involved [30], which necessarily raises
difficult issues as high-precision control of such a system
inevitably requires precise device characterization [31]. The
purpose of this paper is to highlight such problems, using the
SQUID as an example system, and to investigate whether a
measurement of its magnetic susceptibility might be capable
of providing some resolution of these difficulties.

III. AN EXAMPLE ANHARMONIC
POTENTIAL—THE SQUID

It is worth stressing, to begin, that the problems encountered
in the present case will inevitably occur, to a greater or lesser
extent, for any anharmonic potential V (x̂), and our choice here
is largely for the purposes of definitiveness. We consider the
following standard model of a SQUID, with charge Q̂ and
flux �̂ as canonically conjugate variables (so that [�̂,Q̂] =
ih̄), coupled both inductively and capacitively to an Ohmic
bath environment, modeled as an infinite set of harmonic
oscillators, mode index n, with charge Q̂n and flux �̂n

([�̂n,Q̂m] = ih̄δnm) [30]. The dimensionless total Hamiltonian
Ĥ/h̄ω0 may be written as a sum of the Hamiltonians of the
SQUID (ĤS), the bath (ĤB), and the coupling between them
(ĤI ):

ĤS = X̂2

2
+ P̂ 2

2
− ν

ω0
cos

(√
βν

ω0
X̂ + 2π�x

�0

)
+ ĤLS

= Ĥ0 + ĤLS,

ĤB =
∑

n

X̂2
n

2
+ P̂ 2

n

2
,

ĤI = −
∑

n

κn(X̂X̂n + gP̂ P̂n) = −X̂B̂X − gP̂ B̂P , (1)

where L and C are the system’s inductance and capaci-
tance, ω0 = 1/

√
LC, and we have introduced the dimen-

sionless operators P̂ = Q̂(h̄Cω0)−1/2, P̂n = Q̂n(h̄Cnω0)−1/2,
X̂ = �̂(h̄Lω0)−1/2, X̂n = �̂n(h̄Lnω0)−1/2, and βν/ω0 =
4π2h̄/�2

0C, while �0 denotes the flux quantum. Here, B̂X and
B̂P are shorthand versions of the bath functions. The externally
applied flux, �x , controls the phase of the cosine in Eqs. (1),
which describe the coupling across the Josephson junction
(energy = h̄ν) [32]. The strengths of the environmental cou-
plings are determined by coupling constants κn and by g, the
ratio of inductive to capacitive coupling. ĤLS is a Lamb shift
Hamiltonian, which is included generally to cancel unwanted
frequency shift terms that are generated in the Lindbald process
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[20]. However, it is useful to leave it unspecified at this
stage.

We assume, as is common, that the initial state of the System
+ Bath is separable and the bath is so large that it rapidly
relaxes back to its initial thermal equilibrium state so that we
may take ρ̂B as effectively independent of time and ρ̂(t) =
ρ̂S(t) ⊗ ρ̂B . Similarly, we assume, for simplicity, that the bath

is described by an Ohmic spectral function of the form

J (ω) = 2γω�2

π (�2 + ω2)
, (2)

with damping rate γ and bath cut-off frequency �.
In the Schrödinger picture, the BM master equation may be

expressed as [9]

dρ̂S(t)

dt
= L[ρ̂S] + K[ρ̂S] = −i[ĤS,ρ̂S(t)] −

∫ ∞

0
dτ TrB[ĤI ,[ĤI (−τ ),ρ̂S(t) ⊗ ρ̂B]].

(3)

The first term, L[ρ̂S], describes free von Neumann evolution of the system and the second, the dissipator K[ρ̂S], describes
nonunitary loss.

Substituting ĤI from Eqs. (1) into the dissipator integral, and evaluating the bath correlation functions (i.e., 〈B̂XB̂X(−τ )〉,
etc.), yields [9,30]

K[ρ̂] = γ�

2ω0

∫ ∞

0
dτe−�τ

(
2�

ω0
(i[X̂,{X̂(−τ ),ρ̂S}] + ig2[P̂ ,{P̂ (−τ ),ρ̂S}] + g[X̂,[P̂ (−τ ),ρ̂S]] − g[P̂ ,[X̂(−τ ),ρ̂S]])

− ([X̂,[X̂(−τ ),ρ̂S]] + g2[P̂ ,[P̂ (−τ ),ρ̂S]] − ig[X̂,{P̂ (−τ ),ρ̂S}] + ig[P̂ ,{X̂(−τ ),ρ̂S}])
)

, (4)

where {·,·} denotes anticommutation.
Expanding the correlation-time dependent observables X̂(−τ ) and P̂ (−τ ) to first order in τ using a BCH series [9]

X̂(−τ ) = X̂ − iτ [HS,X̂] + O(τ 2,γ ) ≈ X̂ − τ P̂ ,

P̂ (−τ ) = P̂ − iτ [HS,P̂ ] + O(τ 2,γ ) ≈ P̂ + τ

(
X̂ + ν

ω0

√
βν

ω0
sin

(√
βν

ω0
X̂ + 2π�x

�0

))
, (5)

effectively corresponds, after time integration, to an expansion in ω0/�, and thus to a broadband bath (large �). The presence of
γ in the error terms in Eqs. (5) arises from the Lamb shift Hamiltonian HLS , i.e., from counter terms included to offset unphysical
frequency shifts [33,34]. Here, such terms are assumed to be in the system, rather than the interaction Hamiltonian, as this
keeps the theoretical development of Eq. (3) somewhat simpler. Finally, evaluating the resulting integrals yields the following
Born-Markov master equation:

dρ̂S

dt ′
= −i[ĤS,ρ̂S] − iγ

ω0
(1 + g2 − g)[X̂,{P̂ ,ρ̂S}] − γ

ω0

(
g + 1

2

)
[X̂,[X̂,ρ̂S]] + γ

2�
(1 − g2)[X̂,[P̂ ,ρ̂S]]

+ i
2γ�

ω2
0

[
X̂2

2
,ρ̂

]
+ i

2γg�

ω2
0

[
P̂ 2

2
,ρ̂

]
− iγ

ω0
g

(
g − 1

2

)
[{X̂,P̂ },ρ̂S] − γ

ω0
g

(
1 + g

2

)
[P̂ ,[P̂ ,ρ̂S]]

+ iγg

ω0

√
βν

ω0

[
ω0

2�
X̂ + gP̂ ,

{
sin

(√
βω0

ν
X̂ + 2π

�x

�0

)
,ρ̂S

}]
− γg

ω0

√
βν

ω0

[
X̂ + gω0

2�
P̂ ,

[
sin

(√
βω0

ν
X̂ + 2π

�x

�0

)
,ρ̂S

]]
.

(6)

In the case that the coupling is purely inductive (g = 0), only
the first five terms on the right hand side of Eq. (6) survive,
so that the external flux control parameter �x disappears from
the dissipator at first order, appearing only in the second order
BCH model in that case [30].

As Eq. (6) is a nonrotating wave (NRW) equation, to assume
Lindblad form [19], both of the following adjustments are
required: some terms that present in the form of a unitary
evolution must be combined with HS to produce an effective
Hamiltonian and some new terms must be added to the
dissipator [24,35]. At the end of this process, Eq. (6) may

be written in the Lindblad form
dρ̂

dt
= −i[Ĥeff,ρ̂] + 1

2

∑
j

{[L̂j ,ρ̂L̂
†
j ] + [L̂j ρ̂,L̂

†
j ]}, (7)

whereHeff is the effective Hamiltonian and the L̂j are Lindblad
operators. We consider each of these adjustments now in detail.

IV. THE EFFECTIVE HAMILTONIAN

Of particular interest is the question of what one might do
with the terms left over from the process of ensuring a Lindblad
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form for master equation. As in the case of the QBM with a
harmonic potential, all such terms present in the form of a
unitary evolution (i.e., as i[Â,ρ̂S] for some Hermitian operator
Â), which may then be included in an effective Hamiltonian.
However, there appears to be no clear means of assessing
whether such terms should be kept or canceled (countered)—
either partially or completely. Retaining all terms for now, we
obtain an effective Hamiltonian Ĥeff = Ĥ0 + ĤXP + ĤPS +
ĤXS + ĤLS − Ĥδ , where

ĤXP = γ

2ω0

(
3g2

2
− g + 1

2

)
{X̂,P̂ },

ĤXS =− γg

4�

√
βν

ω0
{X̂,Ŝ}, ĤPS = −γg2

2ω0

√
βν

ω0
{P̂ ,Ŝ},

Ĥδ = 2γ�

ω2
0

(
X̂2

2
+ g

P̂ 2

2

)

+ γg2β

4�
cos

(√
βω0

ν
X̂ + 2π

�x

�0

)
(8)

where we have introduced the symbol S as a shorthand for
the sine terms in Eq. (6). Note that the final term Ĥδ causes
a renormalization of all terms in the system Hamiltonian
ĤS . The first two cause the anticipated “frequency” shift
of the LC oscillator, while the last term renormalizes the
tunneling energy of the Josephson junction. In other words,
the environment appears to affect all terms in the system
Hamiltonian, raising the question: What in Ĥeff should one
cancel with a carefully chosen ĤLS as being unphysical? For
the SQUID, this is an open question, the answer to which one
might seek from rehearsing standard QBM analysis. In the
case of a harmonic potential, the sine (Ŝ) and cosine terms
are missing from Eqs. (8), giving an effective Hamiltonian
Ĥeff = Ĥ0 + ĤXP + ĤLS − Ĥδ , where

ĤXP = γ

2ω0

(
3g2

2
− g + 1

2

)
{X̂,P̂ },

Ĥδ = 2γ�

ω2
0

(
X̂2

2
+ g

P̂ 2

2

)
.

(9)

Ĥδ is routinely canceled by introducing an identical coun-
terterm, i.e., by setting ĤLS = Ĥδ , while the impact of ĤXP

has previously been discussed in terms of frequency shifts and
squeezing [30,32], and in other contexts too [19,21,21–26,29];
however, it has also been the source of some debate as
discussed in the Introduction: arranging for a counterterm
in ĤLS allows the master equation to display additional
properties [21], while such cancellation does come at the cost
of sacrificing translational invariance [19] and Ehrenfest [23].

Returning to the present case of the SQUID, and as a
extension of QBM, we also choose to set Ĥδ = ĤLS in the
remainder of the analysis. The additional cosine term in
Eqs. (8) is sufficiently small as to not impact on the conclusions
of this section (for all intents and purposes, Fig. 1 and Fig. 2
remain the same), whether it is canceled or not. What then
remains is the question of what to do with the anticommutator
terms; generally the most significant of which is the squeezing
X̂P̂ + P̂ X̂ term. Before proceeding, it is worth making the
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FIG. 1. The energy eigenvalues of the effective system Hamil-
tonian Ĥeff, including all anticommutator contributions from the
environment, as a function of external flux �x , for various coupling
ratios g. Results are obtained with parameter values of Joseph-
son energy h̄ν = 6.693 × 10−22 J = 7.74h̄ω0, capacitance C = 5 ×
10−15 F, inductance L = 3 × 10−10 H, damping rate γ = 0.05ω0, and
bath cut-off frequency � = 10ω0. Increasing the coupling ratio has a
noticeable effect on the energy level structure.

observation that, for a general potential V (X̂), V ′(X̂) − X̂

would replace
√

βν/ω0Ŝ in Eqs. (8), and the cosine term in
Ĥδ would be replaced by a term proportional to V ′′(X̂).

The impact of the anticommutator terms on the lowest five
energy eigenvalues of Ĥeff, as a function of the external flux
�x , may be seen in Fig. 1, for a variety of values of g. Here,

FIG. 2. Spiderweb Diagram. The solid line shows the lowest
eigenvalue for the SQUID Hamiltonian plus various combinations of
anticommutator terms that arise from coupling to the environment, as
labeled. Dashed and dotted lines show, for comparison, the lowest
eigenvalues of Ĥ0 (the isolated SQUID) and Ĥeff (corrected for
environmental contributions, but with ĤLS = Ĥδ), respectively. Note
that the contributions of ĤXP , ĤXS , and ĤPS are not independent,
and that the combination ĤXP + ĤXS accounts for the majority of
the alteration. The origin corresponds to E = 0, the outer radius to
E = 6.0h̄ω0. Here, �x = 0.5�0, g = 1.8.
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the SQUID parameters are chosen to be L = 3 × 10−10 H,
C = 5 × 10−15 F, giving an LC frequency ω0 = 8.16 × 1011

rads−1. In dimensionless units, we assume a weak coupling
of γ /ω0 = 0.05, a broad spectrum Ohmic bath with cutoff
� = 10ω0 and a Josephson coupling energy of ν/ω0 = 7.74,
in this case corresponding to a critical current IC ≈ 3μA. All
calculations were preformed in the Fock basis of the harmonic
part of the system Hamiltonian, truncated at 140 basis states to
ensure accuracy of the numerics. Even at levels significantly
below this value, results are insensitive to where the truncation
is applied.

Figure 2 shows the contribution to the lowest energy
level of the anticommutator terms, ĤXP ,ĤPS , and ĤXP , in
Eqs. (8), both individually and in pairs, to illustrate how the
cancellation, or not, of such terms will alter the system’s
ground state. It is clear from both of these figures that these
effects are non-negligible, and that any form of ad hoc process
to deal with their contribution is likely to lead to erroneous
system models. That one of the terms is already known to
be important in the quantum to classical transition [25–29]
implies that there are physically important implications here
that almost certainly should not be ignored.

The magnetic susceptibility for a SQUID ring [36],

χ0(�x ; g) = −L
∂2E0(�x ; g)

∂�2
x

, (10)

provides a useful mechanism to probe the dependence of the
lowest energy eigenvalue on the external flux �x , and the
coupling ratio g. Plotted as χ0(�x ; g)/L in Fig. 3, it shows
significant variations with both �x and g.

An important conclusion of the analysis to this point is that,
by arranging an adjustable capacitive coupling and varying the
external flux, a measurement of χ0 can provide an empirical
test of the presence of the anticommutator terms and, hence,
whether they are indeed physical and should be kept, or are
merely an artifact of the process needed to shoehorn the Born-
Markov master equation into Lindblad form and need to be
canceled.

We end this section by noting that the interpretation of this
experiment (the variation of the susceptibility with g, and �x

shown in Fig. 3) depends upon an acceptance that it is valid,
at least to a reasonable level of approximation, to describe the
decoherence seen in the case of a SQUID by a Markovian
Lindblad master equation. From any given initial state, short

FIG. 3. Ground state magnetic susceptibility as a function of
the external flux �x , and capacitive coupling strength g, with all
anticommutator terms included in Ĥeff. As the coupling strength is
increased, the external flux dependence of the magnetic susceptibility
flattens out, showing measurable differences that could form the basis
of experiments to certify specific candidate open-system models.

time evolution is likely to be non-Markovian; however, for
times longer than the relaxation time of the system, evolution
is expected to be approximately Markovian [37]. However,
such an experiment may also provide evidence in support, or
otherwise, of the use of the Markovian approximation in low
temperature systems such as this.

V. OBTAINING THE LINDBLADS

The terms that must be added to a BM master equation,
such as Eq. (6), are generally clear; in this case the missing
term is [Ŝ,[Ŝ,ρ̂S]]. In the case of a harmonic potential, the
missing term is of the form [P̂ ,[P̂ ,ρ̂S]], with its coefficient
chosen to ensure one makes the smallest change possible to
the master equation. This is sometimes described as minimal
invasion [9]. Here, it is clear from Eq. (6) that the Lindblads
will be formed from linear combinations of the components
X̂, P̂ , and Ŝ, whose weights may be obtained by diagonalizing
the coefficient matrix [9]

aAB = γ

ω0

⎛
⎜⎜⎜⎝

2g + 1 −i(1 + g2 − g) − ξ (1 − g2) g

√
βν

ω0
(1 + iξ )

i(1 + g2 − g) − ξ (1 − g2) 2g + g2 g2
√

βν

ω0
(ξ + i)

g

√
βν

ω0
(1 − iξ ) g2

√
βν

ω0
(ξ − i) 0

⎞
⎟⎟⎟⎠ (11)

for A,B ∈ {X,P,S}, defined (with ξ = ω0/2�) such that
aAB is the coefficient of [Â,[B̂,ρ̂S]] in Eq. (6). As is often
the case with nonrotating-wave Born-Markov equations, the
coefficient matrix is not positive semidefinite, and so does
not conserve probability. To ensure physicality, we proceed
in what might be considered to be the standard manner and

alter aSS just sufficient to make the coefficient matrix positive
semidefinite and its eigenvalues non-negative. Effectively, this
is accomplished in a minimally invasive [9] manner by fixing
det(a) = 0, i.e., by altering aSS to

aSS = βγ ν

ω2
0

4g4 + 8ξ 2g3

(−g4 + 2g2 − 1)(1 + ξ 2) + 4g(g2 + 1)
, (12)
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FIG. 4. The two nonzero eigenvalues of the coefficent matrix aAB

[Eq. (11) ], which determine the strength of the Lindblad operators, as
a function of coupling ratio g. Making the minimum addition to ensure
Lindblad form constrains g, for ξ = 0.25, as here, g ∈ (0.227,4.4).
An alternative, more invasive change to aAB , which affects both
aPP and aSS, produces the dot-dashed eigenvalues. Markers indicate
values at g = 0.25, used in decoherence calculations.

together with the constraint that 0.23 � g � 4.4, whose exact
bounds are weakly dependent on ξ � 0.25. This procedure
ensures the two remaining eigenvalues are positive. The range
of g values may be extended, but only at the cost of a more
significant change to the matrix a; this necessarily increases
det(a) away from 0 and also, as a consequence, introduces a
third Lindblad.

The origin of the lower limit on g is clear from a
consideration of the case of purely inductive coupling [30],
when the coefficient matrix reduces to

aAB = γ

ω0

(
1 −i − ξ

i − ξ 0

)
(13)

in the basis {X̂,P̂ }. Now guided by the same notions, and to
ensure positive eigenvalues, we take aPP = γ (1 + ξ 2)/ω0. This
choice sets det(a) = 0, and leads to a generalized annihilator
Lindblad of the form c1X̂ + c2P̂ . Essentially, this is the
same process as the adding of Dpp[p̂,[p̂,ρ̂S]] in the case of
Brownian motion in a harmonic potential, as discussed in the
Introduction. It is clear that if the coefficient matrix in Eq. (11)
is to lead to positive eigenvalues, then, roughly speaking,
ω0aPP/γ := 2g + g2 must be larger than 1 + ξ 2, and thus g

must be bounded below.
It is possible to use an alternative method, which removes

the lower bound on g, but involves adding terms to Eq. (6)
in two stages. First, one completes the Lindblad form for
the inductive channel only (i.e., g = 0) by adjusting aPP,
and then opens the capacitive channel (g �= 0) and completes
the process again, adjusting aSS; for midrange values of g

there is little difference between the results obtained (see
the dot-dashed lines in Fig. 4); the dominant Lindblad
is unchanged beyond g ≈ 0.25, though the less dominant
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FIG. 5. The real and imaginary coefficients of the component
operators of the dominant Lindblad, eigenvalue λ1, as a function of
coupling ratio g. In addition to the expected generalized annihilator
contributions, there are also significant contributions from Ŝ. This
shows that the contribution from the Josephson junction term to the
Lindblads are significant, and depend nontrivially on the coupling
strength g. It is also noteworthy that this naturally leads to an external
flux dependence in the Lindblad.

Lindblad is somewhat stronger in this second method. Either
way, the upper limit on g remains. However one chooses
to proceed, it is clear that using this minimal invasion, as a
guiding principle, is rather ad hoc and does not provide a
continuous, or a particularly satisfactory means of introducing
extra decoherence channels and that some other method is
necessary. As our main conclusions are largely independent of
the particular choice, for our present purposes we choose aSS

as given in Eq. (12) and accept the restriction on g.
With this adjustment to aSS, diagonalizing the coefficient

matrix in Eq. (11) leads to real, positive eigenvalues λj ,
and associated eigenvectors uT

j in the (X̂,P̂ ,Ŝ) basis. The

Lindblad operators are then created as L̂j = √
λj (X̂,P̂ ,Ŝ)uT

j .
As det(a) = 0, one of the eigenvalues is zero for all g, meaning
that the associated Lindblad may be neglected. For midrange g

values, the two remaining eigenvalues λj , displayed in Fig. 4,
possess a slowly increasing dependence on the strength of
capacitive coupling. The weighting of the basis terms X̂,P̂ ,
and Ŝ in each Lindblad is presented in Figs. 5 and 6. These
figures show, respectively, the real and imaginary contribution
of each operator to each Lindblad. In addition to an anticipated
generalized annihilator contributions of the form b̂ = c1X̂ +
c2P̂ , there are now also significant contributions arising from
the Josephson term Ŝ and, consequently, a significant role in
decoherence for the external flux �x . We consider this impact
in the next section.

VI. MODELING DECOHERENCE

With Lindblads obtained for a particular coupling strength,
it is possible to examine the impact of the environment on
the SQUID through Eq. (7). In the range 0.25 � g � 4.4,
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FIG. 6. As in Fig. 5 for the second Lindblad, eigenvalue λ2.

we obtain very similar Lindblads from the two methods
used in the previous section so, to complete the analysis we
investigate the decoherence, assuming all anti-commutator
terms are included, with g = 0.25. Here we take the purity
of the steady state P∞ = Tr [ρ(t → ∞)2], and its dependence
on the externally applied magnetic flux �x , as a measure of the
effect of environmental degrees of freedom. This dependence
is shown in Fig. 7, for a number of coupling ratios, with a
bath cutoff frequency of � = 2ω0. The Lindblads responsible
for these dissipative effects may be drawn from Figs. 5 and 6,
and the steady state purity is obtained from solving Eq. (7)
with the left-hand side set to zero. The dashed curve in Fig. 7,
for example, corresponds to the case of g = 0.25 when the
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FIG. 7. The steady state purity of a SQUID coupled inductively
and capacitively to an Ohmic bath as a function of external flux for
various capacitive coupling strengths at a bath cut-off frequency of
� = 2ω0. Note that the well created about �x = 0.5�0, and flattens
and widens as capacitive coupling strength is increased.
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FIG. 8. The steady state purity of a SQUID coupled inductively
and capacitively to an Ohmic bath as a function of external flux for
various bath cutoff frequencies at a coupling ratio of g = 0.55. A drop
in purity below a value of a half suggests leakage to higher energy
levels than simply the ground state.

Lindbalds L1 and L2 are given by

L1√
1.36γ /ω0

= 0.63X̂ + (0.48i − 0.24)P̂ + (0.05i − 0.55)Ŝ,

L2√
3.33γ /ω0

= 0.54X̂ + (0.22i − 0.015)P̂ + (0.8 − 0.16i)Ŝ

(14)

(see markers in Fig. 4).
Figure 7 indicates increased mixing with increasing capac-

itive coupling. At low g the shape of the purity curve has
a strong resemblance to that found when the decoherence
is due to an annihilation operator [30], while at higher g

values, the well at the half integer flux broadens. The impact
on the steady state obtained through increasing the coupling
strength to g = 0.55 is also significant, and occurs in a
manner that is relatively insensitive to the bath cutoff beyond
� � 10 − 20ω0, as shown in Fig. 8. Noticeably, the steady
state purity in both Figs. 7 and 8 falls below 0.5, and an
analysis of the density matrix ρ̂S indicates that a number of
low excited states are involved in the mixture. This behavior
is different from the spontaneous decay found in flux qubits
caused by 1/f noise, where the system would be expected to
reach a purity Tr [ρ̂2] of approximately 0.5 [38].

VII. CONCLUSIONS

Making new quantum technologies scalable will rely on the
ability to perform careful modeling and simulation. Any such
simulation framework will require high-fidelity models and
accurate characterization methods, to allow precision control
and enable the necessary error correction. However, it seems
clear that, beyond the simplest case of a high temperature
harmonic potential, deriving Lindblad master equations from
the Born-Markov approximation becomes rather ad hoc, as
the decision to include (as being physically real) or to exclude
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(through the use of counterterms) is not supported well enough
by our knowledge of the systems involved. Even in that
simplest case (QBM), there is still some disagreement about
whether a squeezing term of the form X̂P̂ + P̂ X̂ should be
kept or canceled [21–24].

For Lindblad decoherence of an open system with an
anharmonic potential V (X̂), a microscopic analysis such as
Born-Markov is necessary to determine the form of the
Lindblads. We show here that, in addition to frequency shifts
(which are routinely canceled) and a squeezing X̂P̂ + P̂ X̂

term (which is generally kept, but occasionally partly or wholly
canceled), forcing the master equation into Lindblad form
generates a number of other, similar terms. In the case of the
SQUID, all terms in the free Hamiltonian H0 are affected by
the environment, including a renormalization of the Josephson
junction tunneling energy, which one must then choose to
counter or not.

In addition to the squeezing term, which here is the
dominant contribution of the remaining environmental impact,
pairwise terms of the form HAB = cAB{A,B} arise for all
pairs A,B ∈ {X̂,P̂ ,V ′(X̂)}, which too must be considered for
inclusion or countering in the same way. Thus, in principle, for
a general potential V (X̂), we must make decisions on whether

to cancel (or adjust) each of the δk,1 � k � 6, in the effective
Hamiltonian

Heff = P̂ 2

2
+ V (X̂) + δ1

X̂2

2
+ δ2

P̂ 2

2
+ δ3V

′′(X̂),

δ4{X̂,P̂ } + δ5{P,V ′(X̂)} + δ6{X̂,V ′(X̂)}. (15)

Careful measurements are needed to justify the steps in
(what might reasonably be termed) the standard method that
we have used. However, the SQUID system is useful in this
regard, as it has simple and adjustable control parameters
(the external flux �x and the relative strength g of capacitive
coupling), which together appear to provide sufficient means to
interrogate the energy level structure through measurement of
the magnetic susceptibility, and thus the effective Hamiltonian.
As we have shown, the additional anticommutator terms will
make a measurable difference and, experimentally, the ability
to create superconducting devices coupled to an artificially
constructed bath of harmonic oscillators is well within the
state-of-the-art. Hence, it will be possible to experimentally
verify whether, for example, the squeezing term X̂P̂ + P̂ X̂

should be canceled by a counterterm or not.
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