7,621 research outputs found
Numerical methods and calculations for droplet flow, heating and ignition
A numerical method was devised and employed to solve a variety of problems related to liquid droplet combustion. The basic transport equations of mass, momentum and energy were formulated in terms of generalized nonorthogonal coordinates, which allows for adaptive griding and arbitrary particle shape. Example problems are solved for internal droplet heating, droplet ignition and high Reynolds number flow over a droplet
A computer program for the calculation of laminar and turbulent boundary layer flows
The results are presented of a study to produce a computer program to calculate laminar and turbulent boundary layer flows. The program is capable of calculating the following types of flow: (1) incompressible or compressible, (2) two dimensional or axisymmetric, and (3) flows with significant transverse curvature. Also, the program can handle a large variety of boundary conditions, such as blowing or suction, arbitrary temperature distributions and arbitrary wall heat fluxes. The program has been specialized to the calculation of equilibrium air flows and all of the thermodynamic and transport properties used are for air. For the turbulent transport properties, the eddy viscosity approach has been used. Although the eddy viscosity models are semi-empirical, the model employed in the program has corrections for pressure gradients, suction and blowing and compressibility. The basic method of approach is to put the equations of motion into a finite difference form and then solve them by use of a digital computer. The program is written in FORTRAN 4 and requires small amounts of computer time on most scientific machines. For example, most laminar flows can be calculated in less than one minute of machine time, while turbulent flows usually require three or four minutes
Three methods of presenting flight vector information in a head-up display during simulated STOL approaches
A simulator study was conducted to determine the usefulness of adding flight path vector symbology to a head-up display designed to improve glide-slope tracking performance during steep 7.5 deg visual approaches in STOL aircraft. All displays included a fixed attitude symbol, a pitch- and roll-stabilized horizon bar, and a glide-slope reference bar parallel to and 7.5 deg below the horizon bar. The displays differed with respect to the flight-path marker (FPM) symbol: display 1 had no FPM symbol; display 2 had an air-referenced FPM, and display 3 had a ground-referenced FPM. No differences between displays 1 and 2 were found on any of the performance measures. Display 3 was found to decrease height error in the early part of the approach and to reduce descent rate variation over the entire approach. Two measures of workload did not indicate any differences between the displays
Bilinear modeling and nonlinear estimation
New methods are illustrated for online nonlinear estimation applied to the lateral deflection of an elastic beam on board measurements of angular rates and angular accelerations. The development of the filter equations, together with practical issues of their numerical solution as developed from global linearization by nonlinear output injection are contrasted with the usual method of the extended Kalman filter (EKF). It is shown how nonlinear estimation due to gyroscopic coupling can be implemented as an adaptive covariance filter using off-the-shelf Kalman filter algorithms. The effect of the global linearization by nonlinear output injection is to introduce a change of coordinates in which only the process noise covariance is to be updated in online implementation. This is in contrast to the computational approach which arises in EKF methods arising by local linearization with respect to the current conditional mean. Processing refinements for nonlinear estimation based on optimal, nonlinear interpolation between observations are also highlighted. In these methods the extrapolation of the process dynamics between measurement updates is obtained by replacing a transition matrix with an operator spline that is optimized off-line from responses to selected test inputs
Status of Outer Planet Global Reference Atmospheric Model (GRAM) Upgrades
The inability to test planetary spacecraft in the flight environment prior to a mission requires engineers to rely on ground-based testing and models of the vehicle and expected environments. One of the most widely used engineering models of the atmosphere is the Global Reference Atmospheric Model (GRAM) developed and maintained by the NASA Marshall Space Flight Center (MSFC). The NASA Science Mission Directorate (SMD) has provided funding support to upgrade the GRAMs
Planned Improvements to the Venus Global Reference Atmospheric Model
The Venus Global Reference Atmospheric Model (Venus-GRAM) is an engineering-level atmospheric model applicable for engineering design analyses, mission planning, and operational decision making. Missions to Venus have generated a wealth of atmospheric data, however, Venus-GRAM has not been updated since its development and release in 2005. GRAM upgrades and maintenance have depended on inconsistent and waning project-specific support. The NASA Science Mission Directorate (SMD) has agreed to provide funding support in Fiscal Year 2018 and 2019 to upgrade the GRAMs. This presentation will provide an overview of Venus-GRAM and the objectives, tasks, and milestones related to the GRAM upgrades
Contestable adulthood: variability and disparity in markers for negotiating the transition to adulthood
Recent research has identified a discreet set of subjective markers that are seen as characterizing the transition to adulthood. The current study challenges this coherence by examining the disparity and variability in young peopleās selection of such criteria. Four sentence-completion cues corresponding to four differentcontexts in which adult status might be contested were given to 156 British 16- to 17-year-olds. Their qualitative responses were analyzed to
explore patterns whilst capturing some of their richness and diversity. An astonishing amount of variability emerged, both within and between cued contexts.The implications of this variability for how the transition to adulthood is experienced are explored. The argument is made that markers of the transition to adulthood are not merely reflective of the bioāpsychoāsocial development of
young people. Rather, adulthood here is seen as an essentially contested concept,located within the discursive interactional environment in which young people participate
Peacock Bundles: Bundle Coloring for Graphs with Globality-Locality Trade-off
Bundling of graph edges (node-to-node connections) is a common technique to
enhance visibility of overall trends in the edge structure of a large graph
layout, and a large variety of bundling algorithms have been proposed. However,
with strong bundling, it becomes hard to identify origins and destinations of
individual edges. We propose a solution: we optimize edge coloring to
differentiate bundled edges. We quantify strength of bundling in a flexible
pairwise fashion between edges, and among bundled edges, we quantify how
dissimilar their colors should be by dissimilarity of their origins and
destinations. We solve the resulting nonlinear optimization, which is also
interpretable as a novel dimensionality reduction task. In large graphs the
necessary compromise is whether to differentiate colors sharply between locally
occurring strongly bundled edges ("local bundles"), or also between the weakly
bundled edges occurring globally over the graph ("global bundles"); we allow a
user-set global-local tradeoff. We call the technique "peacock bundles".
Experiments show the coloring clearly enhances comprehensibility of graph
layouts with edge bundling.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Managing oaks for acorn production to benefit wildlife in Missouri (2013)
Many landowners are interested in managing their woodlands and forests not only for potential income from sales of wood products but also for enhanced wildlife habitat. This publication provides information on techniques that can be used to help make informed decisions on the management of oaks on a property for increased mast production and other wildlife benefits.New 8/13/Web
Correlated defects, metal-insulator transition, and magnetic order in ferromagnetic semiconductors
The effect of disorder on transport and magnetization in ferromagnetic III-V
semiconductors, in particular (Ga,Mn)As, is studied theoretically. We show that
Coulomb-induced correlations of the defect positions are crucial for the
transport and magnetic properties of these highly compensated materials. We
employ Monte Carlo simulations to obtain the correlated defect distributions.
Exact diagonalization gives reasonable results for the spectrum of valence-band
holes and the metal-insulator transition only for correlated disorder. Finally,
we show that the mean-field magnetization also depends crucially on defect
correlations.Comment: 4 pages RevTeX4, 5 figures include
- ā¦