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Abstract

A new numerical method has been devised and employed to solve a variety of problems
related to liquid droplet combustion. The basic transport equations of mass, momentum and
energy have been formulated in terms of generalized nonorthogonal coordinates, which allows
for adaptive griding and arbitrary particle shape. In this paper example problems are
solved for internal droplet heating, droplet ignition and high Reynolds number flow over a
droplet.

Introduction

This paper presents initial results of a research effort whose end goals are the
calculation of single and multiple liquid droplet combustion flows. The complete problem
of even single droplet combustion presents a severe challenge for present day numerical
methods because of the multiple space and time scales which can be introduced into the
problem. These scales are the result of high Reynolds and Peclet numbers as well as flame
formation around the droplet. Tn order to resolve all the physical phenomena that are
contained in the problem, it is necessary to use the grid points in a numerical solution
method very efficiently. A major new advance in the efficient locat}o? of grid points is
the use of generalized nonorthogonal coordinates and adaptive qrids.”: 3 It will be
shown, and has been shown, that these methods greatly enhance the ability to calculate
complex flows.

Tn the present paper major simplifications have been made in the flow eguations to
isolate physical phenomena and “est the efficiency of the numerical methods employed. The
most limiting simplification will be that of constant overall density, however as will be
shown, the numerical significance of the results are not damaged by the assumptions made.

Basic transport equations

The equations for momentum, energy, and mass transport will now be written in terms of
generalized coordinates, and the numerical methods employed discussed. The starting point
is the eguations in terms of axially-symmetric cylindrical coordinates, and the equations
for stream function (¢), vorticity («), temperature (T) and reactant species density
(oa), which are the following:
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where the following notation has been used for physical constants: Ky-pre-exponential
reaction constant; Eg-activation energy; R-gas constant; k-thermal conductivity, p-over~
all density; and Ahg~chemical heat release, Also, the independent variables t, r and
are the time, radial coordinate and axial position, respectively. (A more detailed expla-
nation of the chemical reaction terms will be given later in the paper.)

A major difficulty with the above formulation is that the surface of the droplet does
not lie naturally on a constant value of the independent variables r and z. However, this
difficulty can be rempved immediately by tranaforming to generalized nonorthogunal coordi-
nates £, n, and thereby making the droplet surface correspond to n=0, In order to simplify
notation it will first be useful to rewrite equations (1) through (5) in a vector form
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Transforming to the variables r, ¢ and n equation (6) becomes
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where the following new vectors have been defined
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and the transforma'ion metrics, or areas and volumes, are given by
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It can easily be seen that the resulting equations are more complex, however the digital
computer is extremely well equipped to handle this type of algebraic complexity, and with
some additional programming a much more valuable research tool is obtained. The equations
as thev are written in (7) will easily handle arbitrary-shaped particles as well as parti-
cles whose shape is changing as a function of time. However, the major advantage of the
above formulation is that it allows the use of adaptive grid procedures to be employed, and
this feature will be shown to be one of the single most important advances in the efficient
use of numerical methods to solve complex physical problems.

An interesting feature of these equations is that they allow for the use of variable
transport properties u, k and Dy, although the overall density must be constant. To the
authors' knowledge this is the first time that a variable transport property formulation of
the stream function-vorticity equations has been given. This formulation will be a com-
plete description of the mass and energy transport processes inside the droplet, where
constant overall density is assumed.

Numerical methods

The original plan for the numerica) solution method was to umploy a fully implicit
iterative scheme to solve the set of transport equations given previously. In order to
solve these equations an alternating-direction-implicit’ (ADI) scheme was employed together
with a Newton procedure to linearize the equations where necessaryS The resulting equa-
tions are block tridiagonal, and the efficient solver of Hindmarsh” was used to obtain the
solution, This prcecedure proved to be unstable because of the large sensitivity that the
stream function has to all errors. The coupling of the vorticity and stream function equa-
tions, plus generalized coordinates, &and block solutions along a line, causes the trun-
cation error to give very inaccurate values of stream function near the boundary. A major
patrt of the problem is due to the fact that the stream function can change by four or five
orders of magnitude trom the body surface to the free stream. The values of the stream
function near the surface are very small and truncation error in the outer part of the flow
overwhelms the small stream function values near the surface. The solution to the problem
is point relaxation of the stream function equation on a previously calculated vorticity
distribution, followed by iteration between the stream function and vorticity equations.
This point relaxation method does not couple all the truncation errors together, and very
qgood results were obtained,

The numerical method that was finally employed had the following features:

1. Stream function-vorticity equations
a. First-order backward, implicit time differences for time derivatives.
b. Second-order central diffevences in space.
c¢. ADI solution of the vorticity equation,
d. Point relaxation of the stream function equation.
e. Global iteration on both equations,

11. Energy and species equations
a. The same space and time differencing as the vorticity eguation.
b. Newton linearization of the nonlinear terms,
c. Block tridiagonal solution with an ADI marching technique.

The above numerical method is somewhat ad hoc in that it uses two difference methods within
itself to determine a solution, however the individual methods reflect the numerical nature
of the equations being solved. The block tridiagonal solution of the energy and species
equation is excellent for chemical reactions, while the point iteration method al‘ows the
stream function to converge accurately and smoothly on the vorticity distribution,

Criterion for qrid placement

The basic criterion for grid placement that was employed in the present paper will now
be presented. The computational space, ¢ and n, has been normalized so that their numeri-
cal values go between zcro and one, and the grid points are fixed in time. 1In the physical
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space the grid points will be placed and moved in time to achieve the resolution of high
gradient regions. Along a given arc in the physical space the grid points will be dis-
tributed in proportion to the gradient of the dependent variable. If the cistance along a
given arc in physical space is denoted by S, a mathematical statement of the relationship
between the computational and physical space is

3 a |°_'_’| as
s

where S is the distance measured on the n = constant arc, and T the dependent variable of

the transport equation being solved, in this paper the dJependent variable is temperature.

In order to normalize, allow for "optimization,” and remove singularities, the above equa-
tion is cast into the following form

[[5€2 + b )33))as]

E(x,y.t) = S 3T
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where b is an adjustable constant used for ®"optimization" of the grid distribution.

The above equation has some interesting features which will now be discussed briefly.
For the case b = § a uniform distribution of points on the nonorthogonal arc is obtainead,
while for large b, constant values of the variable T, or isotherms, are selected. The
coordinate location equation is solved in an expl&cit sense at the old time step, and the
details can be found in the paper by Dwyer et al. Also, it should be mentioned that the
accuracy in solving the eguation does not influence directly the accuracy of the finite
difference solution. With the use of these generalized coordinates and an adaptive grid
technique a powerful new method is available for numerical solution,

In the present paper the adaptive griding procedure has only been employed in the
calculation of the temperature and species concentrations, and has not bee¢n used for the
stream function-vorticity part of the method. The stream function and vorticity have been
calculated from a predetermined grid, however the use of adaptive griding for the fluid
dynamics is being implemented at the present time.

Results

The results which will be presented illustrate mainly the capability of the calculation
method, and do not give a complete description of droplet combustion. The problems which
have been solved are the following:

1. 1Ignition and flame propagation about hot particles.

2, Separated flow around liquid droplets.

A description of each of these results will now be given,

The first problem solved was to calculate the ignition and flame propagation about a
spherical particle. The reaction mechanism is very simple and consisted of a premixed fuel
A reacting and going over to species B. The nondimensional form of the energy and species
equations are
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where Pe = Peclet Number, based on maximum velocity Ua inside the droplet

a

Npp = Dimersionless Pre-Exponential Reaction Coefficient.
6, = Activation Temperature, Ea/R.

and it has been assumed that all transport coefficients are constant, and that the thermal
diffusivity and species diffusivity are equal.
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For this ignition model problem the velocity field was assumed to be that given by
Stokes flow, and the overall density was assumed constant. The value for the Peclet number

was chosen to be 200 and 6,=4 for an initial temperature of premixed reactant of T=.2.
The spherical particle surface will be vaised impulsively to T=1.0 and the adiabatic
flame temperature in terms of dimensionless temperature is Tap = 1.2.

The values for the pre-exponential coefficient were chosen to be characteristic of
hydrocarbon fuels, thus the basic time scales of the processes are similar to a moderate
Reynolds number particle in a premixed hydrocarbon gas (however, the simulation is highly
simplified as can be easily seen). The first resglts for the numerical simulation are
shcwn in Figures (1) through (4) for Npp = 2.2¢10°, which corresponds to a rather thin
flame compared to particle diameter. Figures (1) and (2) show the coordinate system (top)
and isotherm distribution for a uniform grid simulation. A careful study of the isotherm
distribution shows oscilla:tions in the flame, and this is due to the high cell Peclet
numbers.

The oscilletions are more severe as the 1lame mcves away from the body, because of the
natural increase in grid cell size occurring in spherical coordinates. As the flame
approaches the computational boundary there is only one point to describe the i.ame struc-
ture. This lack of resolution results in temperature and species coscillations in the cal-
cula.ior, incorvect flame speed and eventually termination of t.ue calculation due to nega-
tive values of temperature and species,

A second more accurate calculation with the same number of grid points, but with the
adaptive grid strategy employed is shown in Figures (3) and (4). The most dramatic feature
of the calculation is the bunching of the grid points inside the flame structure. This
removes all the numerical ?8cillatlons, and the overall flame speed agrees well with the
results of Otey and Dwyer. The results of this calculation thus show dramatically the
usefulness and capabilities of the adaptive grid procedure for combustion problems.

A second calculation with a reduced reaction rate {(Npp = 2.2-10%) is shown in Figures
(5) through (8). 1In this case the flame is much thicker and the coordinate adaption is
only very slight. However, the ignition and flame propagation processes are much more
interesting. Figure (5) exhibits the isotherm distribution at an early time with a maximum
temperature of T = 1,0 occuring at the particle surface. As time increases an iqnition
process occurs at the rear stagnation point (Figure (6)) and then a steady state reaction
zore is set up on the leeward side of the particle (Figures (7)-(8)). It is easily seen
from the isotherm distribution that the surface location where the gas temperature rises
above the wall temperature guickly stabilizes on the leeward side of the particle surface.
These results show that the present calculation methods will resolve ignition phenomena in
particle dynamics.

The final results to be presented are a demonstration of the ability of the numerical
methods to calculate the fluid flow around and inside droplets. Shown in Figures (9)
through (11) are the distribution of stream function and vorticity for a solid particle in
a flow with a Reynolds number of 100, based on particle diameter. Figure (9) exhibits the
distribution of stream function outside the particle, while Figure (10) shows the stream
function inside the separation bubble (the top figure is the coordinate distributions). A
more dramatic representation of high Reynolds number influences can be seen in Figure (11)
where the normalized vorticity contours are given. The bunching of the contours on the
windward side of the particle is clear evidence ot the start of boundary layer formation
and separation.

All of the above results agree well with the calculations of Le Clair.’ Figure (12)
exhibits the streamline pattern irzide of a liquid droplet at an external flow Reynolds
number of 200. For this calculation the ratios of liquid droplet to gas viscosity and
density are respectively

Shoaso 7Lo= 1000
g 9
which are typical values of i-~terest to combustion problems. Therefore, it seems that the

methods we are employing are .ite encouraging, and give strong promise of giving new
resuits for the complete problem of droplet combustion.

Conclusions
A Law collection of numerical techniques has been assembled to solve problems of heat,

mass and momentum transport in droplet combustion systems, The major new features of this
collection of methods are the following:
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1. Generalized Nonorthogonal Coordinates

2. MAdaptive Griding on Temperature Gradients

3. Block Tridiagonal Solution of Energy and Species Equations

4. Point lteration of the Stream Function on the Vorticity Distribution
All of the above methods have shown themselves stable and capable of giving improved
results for the fluid flow, heat transfer, and mass transfer problems solved.

'
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N

The physical problems solved in the paper were moderate Reynolds number flow over both -
solid and liquid droplets, as well as a study of ignition around a hot solid particle in a .
” Stokes flow. The fluid flow studies reproduced the results of other investigators, and :
. thus verified the accuracy of the methods employed. The study of ignition about a hot par-

2 ticle showed clearly that ignition can be delayed until the leeward side of the particle, )

’ and a flame can be stabilized in the wake of the particle. These results seem to be new, ‘
and the future inclusion of variable density will allow for a complete description of

particle ignition. Also, it should be mentioned again that the high-reaction-rate ignition

studies would not be possible without adaptive griding, because of its efficient use of

grid points.
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