569 research outputs found

    A note on topological amenability

    Get PDF
    We point out a simple characterisation of topological amenability in terms of bounded cohomology, following Johnson's reformulation of amenability

    Large Deviations for Brownian Intersection Measures

    Get PDF
    We consider pp independent Brownian motions in Rd\R^d. We assume that p≄2p\geq 2 and p(d−2)<dp(d-2)<d. Let ℓt\ell_t denote the intersection measure of the pp paths by time tt, i.e., the random measure on Rd\R^d that assigns to any measurable set A⊂RdA\subset \R^d the amount of intersection local time of the motions spent in AA by time tt. Earlier results of Chen \cite{Ch09} derived the logarithmic asymptotics of the upper tails of the total mass ℓt(Rd)\ell_t(\R^d) as t→∞t\to\infty. In this paper, we derive a large-deviation principle for the normalised intersection measure t−pℓtt^{-p}\ell_t on the set of positive measures on some open bounded set B⊂RdB\subset\R^d as t→∞t\to\infty before exiting BB. The rate function is explicit and gives some rigorous meaning, in this asymptotic regime, to the understanding that the intersection measure is the pointwise product of the densities of the normalised occupation times measures of the pp motions. Our proof makes the classical Donsker-Varadhan principle for the latter applicable to the intersection measure. A second version of our principle is proved for the motions observed until the individual exit times from BB, conditional on a large total mass in some compact set U⊂BU\subset B. This extends earlier studies on the intersection measure by K\"onig and M\"orters \cite{KM01,KM05}.Comment: To appear in "Communications on Pure and Applied Mathematics

    Scaling of human behavior during portal browsing

    Full text link
    We investigate transitions of portals users between different subpages. A weighted network of portals subpages is reconstructed where edge weights are numbers of corresponding transitions. Distributions of link weights and node strengths follow power laws over several decades. Node strength increases faster than linearly with node degree. The distribution of time spent by the user at one subpage decays as power law with exponent around 1.3. Distribution of numbers P(z) of unique subpages during one visit is exponential. We find a square root dependence between the average z and the total number of transitions n during a single visit. Individual path of portal user resembles of self-attracting walk on the weighted network. Analytical model is developed to recover in part the collected data.Comment: 6 pages, 7 figure

    Non-additivity of Renyi entropy and Dvoretzky's Theorem

    Full text link
    The goal of this note is to show that the analysis of the minimum output p-Renyi entropy of a typical quantum channel essentially amounts to applying Milman's version of Dvoretzky's Theorem about almost Euclidean sections of high-dimensional convex bodies. This conceptually simplifies the (nonconstructive) argument by Hayden-Winter disproving the additivity conjecture for the minimal output p-Renyi entropy (for p>1).Comment: 8 pages, LaTeX; v2: added and updated references, minor editorial changes, no content change

    A forward-backward splitting algorithm for the minimization of non-smooth convex functionals in Banach space

    Full text link
    We consider the task of computing an approximate minimizer of the sum of a smooth and non-smooth convex functional, respectively, in Banach space. Motivated by the classical forward-backward splitting method for the subgradients in Hilbert space, we propose a generalization which involves the iterative solution of simpler subproblems. Descent and convergence properties of this new algorithm are studied. Furthermore, the results are applied to the minimization of Tikhonov-functionals associated with linear inverse problems and semi-norm penalization in Banach spaces. With the help of Bregman-Taylor-distance estimates, rates of convergence for the forward-backward splitting procedure are obtained. Examples which demonstrate the applicability are given, in particular, a generalization of the iterative soft-thresholding method by Daubechies, Defrise and De Mol to Banach spaces as well as total-variation based image restoration in higher dimensions are presented

    Locally Perturbed Random Walks with Unbounded Jumps

    Full text link
    In \cite{SzT}, D. Sz\'asz and A. Telcs have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if d≄2d \ge 2. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of \cite{SzT} to unbounded random walks whose jump distribution belongs to the domain of attraction of the normal law. We do this first: for diffusively scaled random walks on Zd\mathbf Z^d (d≄2)(d \ge 2) having finite variance; and second: for random walks with distribution belonging to the non-normal domain of attraction of the normal law. This result can be applied to random walks with tail behavior analogous to that of the infinite horizon Lorentz-process; these, in particular, have infinite variance, and convergence to Brownian motion holds with the superdiffusive nlog⁥n\sqrt{n \log n} scaling.Comment: 16 page

    From Low-Distortion Norm Embeddings to Explicit Uncertainty Relations and Efficient Information Locking

    Full text link
    The existence of quantum uncertainty relations is the essential reason that some classically impossible cryptographic primitives become possible when quantum communication is allowed. One direct operational manifestation of these uncertainty relations is a purely quantum effect referred to as information locking. A locking scheme can be viewed as a cryptographic protocol in which a uniformly random n-bit message is encoded in a quantum system using a classical key of size much smaller than n. Without the key, no measurement of this quantum state can extract more than a negligible amount of information about the message, in which case the message is said to be "locked". Furthermore, knowing the key, it is possible to recover, that is "unlock", the message. In this paper, we make the following contributions by exploiting a connection between uncertainty relations and low-distortion embeddings of L2 into L1. We introduce the notion of metric uncertainty relations and connect it to low-distortion embeddings of L2 into L1. A metric uncertainty relation also implies an entropic uncertainty relation. We prove that random bases satisfy uncertainty relations with a stronger definition and better parameters than previously known. Our proof is also considerably simpler than earlier proofs. We apply this result to show the existence of locking schemes with key size independent of the message length. We give efficient constructions of metric uncertainty relations. The bases defining these metric uncertainty relations are computable by quantum circuits of almost linear size. This leads to the first explicit construction of a strong information locking scheme. Moreover, we present a locking scheme that is close to being implementable with current technology. We apply our metric uncertainty relations to exhibit communication protocols that perform quantum equality testing.Comment: 60 pages, 5 figures. v4: published versio

    Asymptotics in Knuth's parking problem for caravans

    Get PDF
    18 pages, 2 figuresWe consider a generalized version of Knuth's parking problem, in which caravans consisting of a number of cars arrive at random on the unit circle. Then each car turns clockwise until it finds a free space to park. Extending a recent work by Chassaing and Louchard, we relate the asymptotics for the sizes of blocks formed by occupied spots with the dynamics of the additive coalescent. According to the behavior of the caravan's size tail distribution, several qualitatively different versions of eternal additive coalescent are involved
    • 

    corecore