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A simple characterization of topological amenability in terms of bounded cohomology

is proved, following Johnson’s formulation of amenability. The connection to injective

Banach modules is established.

1 Introduction

1.1 Motivation

According to Johnson–Ringrose [18, Section 2], a locally compact group G is amenable

if and only if the (continuous) bounded cohomology Hn
b(G, E∗) vanishes for all n≥ 1 and

all (continuous) Banach G-modules E . Here, E∗ denotes the dual module; the very nature

of amenability as a limiting property explains the use of duals and weak limits. The

corresponding condition on all modules simply characterizes compact groups instead.

In Johnson’s terminology, Hn
b(G,−) is the cohomology of the Banach algebra L1G. The

importance of this reformulation is that it led to Johnson’s definition of amenable

algebras.

The purpose of this note is to establish the corresponding characterization of

amenable actions in the topological sense. One motivation is the particular case of

exactness of discrete groups.
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Definitions will be recalled in the text as needed. For now, keeping in mind

the above remark on duals and limiting phenomena, we just propose the slogan that

amenable actions are to proper actions what amenable groups are to compact groups.

This note grew out of my reading of [9] where a partial result for the case of

exactness is obtained by another approach. I have been informed by Brodzki, Niblo,

Nowak, and Wright that they have previously obtained a characterization of amenable

actions. After completing this note I received their preprint containing similar ideas

(now available as [2]); the reader is encouraged to consult that article as well.

1.2 Topological amenability

Let G be a group acting on the compact space X. We always assume that X is Hausdorff

and that the action is by homeomorphisms. There is no topology on G (although our

discussion of relative injectivity applies to locally compact groups also).

What is desired is a cohomological characterization of the amenability of this

action. It should extend the Johnson–Ringrose criterion for the amenability of (discrete)

groups. We propose, therefore, to consider the vanishing of H•
b(G, E∗) for a class of

Banach G-modules E determined by X. The condition imposed by X should be void

when X is a point, and be functorial. Before going any further, there is an obvious guess:

all modules of the form E = C (X,V) where V is any Banach G-module. It turns out that

there is indeed an easy criterion along those lines:

The G-action on X is topologically amenable if an only if Hn
b(G,C (X,V)∗∗)

vanishes for every Banach G-module V and every n≥ 1.

An aesthetic drawback is that we passed here to the bidual E∗∗, whilst one

expects a criterion involving all duals; furthermore, we would like more general and

more intrinsic classes of modules than E = C (X,V). We shall, therefore, move beyond

this obvious first guess and return to general Banach G-modules E . The influence of X

will simply be through the data of a C (X)-module structure, which should of course be

compatible with the G-action.

Let us therefore call E a (G, X)-module if it is both a Banach G- and C (X)-

module, such that gϕg−1 corresponds to the action of g ∈ G on ϕ ∈ C (X). This purely

algebraic structure is too general to capture the analytic situation: Example 8 illustrates

that it cannot characterize amenability. This reflects the fact that not all (G, X)-modules

are modules for the underlying crossed product algebra introduced below. Analyzing

only the C (X)-structure alone, we can, however, isolate a relevant concept inspired by

Kakutani’s classical work [19, 20]:
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Definition 1. We say that a C (X)-module E is of type M if for all u∈ E and ϕi ∈ C (X)

with ϕi ≥ 0 one has

‖ϕ1u‖ + · · · + ‖ϕnu‖ ≤ ‖ϕ1 + · · · + ϕn‖ · ‖u‖. (M)

We say that E is of type C if for all ui ∈ E and ϕi ≥ 0 one has

‖ϕ1u1 + · · · + ϕnun‖ ≤ ‖ϕ1 + · · · + ϕn‖ · max
i

‖ui‖. (C)

�

(These notions are mutually dual, yet both types include modules that are not

dual. The fundamental examples motivating the terminology are modules of measures,

respectively, of continuous functions.)

We now have the criterion that we sought:

Proposition (Concise version). Let G be a group acting on the compact space X. The

following are equivalent.

(i) The G-action on X is topologically amenable.

(ii) H1
b(G, E∗)= 0 for every (G, X)-module E of type M.

(iii) Hn
b(G, E∗)= 0 for every (G, X)-module E of type M and every n≥ 1. �

1.3 Injective modules and means

Our cohomological characterization extends to a further aspect not covered by Johnson–

Ringrose, namely injective modules (see Section 2.1). By way of motivation, we recall the

analogous situation in ergodic theory.

For measure spaces, amenable actions in Zimmer’s sense [27] are characterized

by the relative injectivity of the corresponding modules of L∞-maps [6, 23]. We shall pro-

vide a similar statement for topological amenability. However, the notion of “bounded

measurable maps” becomes problematic when X is non-metrizable, as it will definitely

be for applications to exactness where X is the Čech–Stone space βG. We submit that

a good analog is provided in complete generality by the dual of the space I(C (X),W)

of integral operators valued in any Banach space W (in the sense of Grothendieck [13,

Section 2] for abstract integral operators between arbitrary Banach spaces). Hence the

statements (iii) and (vii). As it turns out, this criterion applies to all dual modules of type

C, see (viii).
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Finally, as in the Johnson–Ringrose criterion, we transit through a character-

ization of amenability in terms of invariant means. The equivalence of this with the

definition of amenability is routine, but we derive it for completeness, see (ix) and (x).

The summation condition therein means that the canonical image in C (X)∗∗ of the invari-

ant element is the bidual of the constant function 1X ∈ C (X).

Proposition (Full version). Let G be a group acting on the compact space X. The

following are equivalent.

(i) The G-action on X is topologically amenable.

(ii) Hn
b(G,C (X,V)∗∗)= 0 for every Banach G-module V and every n≥ 1.

(iii) Hn
b(G, I(C (X),W)∗)= 0 for every Banach G-module W and every n≥ 1.

(iv) Hn
b(G, E∗)= 0 for every (G, X)-module E of type M and every n≥ 1.

(v) Any of the previous three points holds for n= 1.

(vi) C (X,V)∗∗ is relatively injective for every Banach G-module V .

(vii) I(C (X),W)∗ is relatively injective for every Banach G-module W.

(viii) Every dual (G, X)-module of type C is a relatively injective Banach

G-module.

(ix) There is a G-invariant element in C (X, �1G)∗∗ summing to 1X.

(x) There is a norm 1 positive G-invariant element in C (X, �1G)∗∗ summing

to 1X. �

Remarks. (a) The proof shows that it suffices in (ix) and (x) that the summation be any

function that never vanishes. The norm condition in (x) is redundant.

(b) The only substantially new fact is the implication (i)⇒(viii), which still holds

for G locally compact second countable with the definitions of [1, Section 2] and [23,

Section 4.1]. �

2 Functional Analytic Context

This section presents more context than is needed for the proofs; we decided to follow

a natural path rather than the shortest one. In particular, the discussion of crossed

products can be ignored by the reader in a hurry. For definiteness, let us agree that

Banach spaces and algebras are real. The few facts on operators and tensor products

that we will use can all be found in Grothendieck [13, 14] (or in the gloss [8]).
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2.1 G-modules and cohomology

We will use almost nothing from the theory of bounded cohomology; for background, we

refer to [11, 17, 18, 23]. A Banach G-module is a Banach space with an isometric linear

G-representation, viewed also as a (left) �1G-module. Johnson [18] allows also uniformly

bounded modules; although this would not change anything to our arguments, we keep

the isometric setting because exact norms are important when applying bounded coho-

mology to the study of characteristic classes [5, 11]. The Banach G-module E is rela-

tively injective if any G-morphism α : A→ E from a Banach G-submodule A⊆ B can be

extended to β : B → E with ‖β‖ = ‖α‖ provided that there is a norm one projection B → A

(as Banach spaces).

2.2 C (X)-modules

Given a compact space X, we endow the algebra C (X)with the uniform norm. A (Banach)

C (X)-module is an algebraic module E such that ‖ϕu‖E ≤ ‖ϕ‖ · ‖u‖E for ϕ ∈ C (X), u∈ E .

For instance, consider the module of (strongly) continuous maps E = C (X,V) to any

Banach space V , with norm ‖η‖E = supx∈X‖η(x)‖V . If V is also a Banach G-module, then

E becomes a Banach G-module for the diagonal action. Moreover, it is a (G, X)-module

as defined in the introduction. Recalling our definition of the types C and M, one checks

that the C (X)-module C (X, E) is of type C. More generally, if Y is a compact space with

a continuous map Y → X, we obtain naturally a C (X)-module structure on C (Y, E) and

it is of type C.

Proposition 2. Let E be a C (X)-module.

(i) E∗ is of type C if and only if E is of type M.

(ii) E∗ is of type M if and only if E is of type C.

(iii) Both conditions C and M descend to submodules.

(iv) Each inequality implies the corresponding inequality for arbitrary ϕi ∈ C (X)

upon replacing ϕi by |ϕi| on the right-hand side. �

Proof. The definition of the dual norm implies readily that E∗ is of type C (respectively,

M) if E is of type M (resp. C). The converse statements follow by duality after embedding

E into E∗∗ and using point (iii), which is obvious. Point (iv) follows from decomposing

each ϕi into positive and negative parts. �
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Corollary 3. For any Banach space W, the C (X)-module I(C (X),W) is of type M. �

Remark 4. If W happens to be a dual W = V∗, then I(C (X),W)∼= C (X,V)∗; but in general

I(C (X),W) is not dual. �

Proof of Corollary 3. Recall that I(C (X),W) sits isometrically as a closed subspace in

the integral bilinear forms BI(C (X)× W∗). The latter is the dual of the injective ten-

sor product C (X) ⊗̌ W∗ which identifies with C (X,W∗). All this is compatible with the

C (X)-structures. In other words, we realized I(C (X),W) as a submodule of C (X,W∗)∗,

which is of type M. �

2.3 The algebra C (X, �1G)

An important particular case is A := C (X, �1G). There are canonical identifications

A := C (X, �1G)∼= C (X) ⊗̌ �1(G)∼= ucG [C (X)],

where ucG [−] denotes unconditionally summable sequences indexed by G. Note, in

particular, that the finite sums of the form
∑

g ϕg ⊗ δg with ϕg ∈ C (X) are dense in A.

Moreover, the A-norm of such an element is

∥∥∥∥∥
∑

g

ϕg ⊗ δg

∥∥∥∥∥
A

=
∥∥∥∥∥
∑

g

|ϕg|
∥∥∥∥∥

C (X)

.

The (G, X)-structure turns A into a Banach algebra that we call the Banach crossed

product of G and X, not to be confused with the C*-algebraic crossed product. Explicitly,

the product is (ϕ ⊗ δg)(ψ ⊗ δh)= ϕgψ ⊗ δgh on elementary tensors with g,h∈ G and ϕ,ψ ∈
C (X). The natural algebraic involution ϕ ⊗ δg �→ g−1ϕ ⊗ δg−1 does not in general extend

to A (Example 9), and there is indeed a fundamental difference between right and left

A-modules, as we shall see.

Proposition 5. Let G be a group acting on the compact space X and let E be a

(G, X)-module. Let A= C (X, �1G).

(i) If E is of type C, then it is naturally a left A-module.

(ii) If E is of type M, then it is naturally a right A-module. �



3878 N. Monod

Example 6. The (G, X)-module C (X) ⊗̂ �1G, where ⊗̂ is the projective tensor product, is

not an A-module unless either G or X is finite. This is a special case of the Dvoretzky–

Rogers Theorem [10] since C (X) ⊗̂ �1G ∼= �1(G,C (X)). In particular, it is not of type C; in

addition, it is not of type M either unless X is a point. �

Proof of Proposition 5. The condition (C) precisely shows that for finite sums

α = ∑
g αg ⊗ δg and u∈ E we have

‖αu‖E =
∥∥∥∥∥
∑

g

αg(gu)

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

g

|αg|
∥∥∥∥∥

C (X)

· max
g

‖gu‖E = ‖α‖A · ‖u‖E

and thus the left multiplication extends to A. If E is of type M, we define

uα :=
∑

g

((g−1αg)⊗ δg−1)u=
∑

g

g−1(αgu),

which is a right module structure over finite sums. We then carry out a similar compu-

tation using the inequality (M). �

3 Amenable Actions

The action of a group G on a compact space X is called topologically amenable if there

is a net {μ j} j∈J in C (X, �1G) such that every μ j(x) is a probability measure on G and

lim
j∈J

‖gμ j − μ j‖C (X,�1G) = 0 (∀g ∈ G).

Note that if G is countable, the net can be replaced by a sequence; this does not require

X to be metrizable and hence applies for instance to the Čech–Stone compactification

of a countable group. Note also that the continuity of μ j : X → �1G can be replaced by

weak-* continuity since both topologies coincide on probability measures. By compact-

ness of X, one can assume that the support of μ j(x) is in a finite set depending only

on j (cf. Prokhorov’s criterion). Finally, we observe that, as expected, amenability is an

“approximate properness” with μ j being an approximate Bruhat function.

Background references are [1, 4]; we recall that the amenability of the action is

equivalent to the nuclearity of the C*-algebraic reduced crossed product, and thus in

turn to its amenability, see Connes [7] and Haagerup [15].
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3.1 Proofs

In order to take advantage of some simple implications, the proof will not follow a single

cycle of implications. The heart of the matter is the following implication, which still

holds for G locally compact second countable with the definitions of [1, Section 2; 23,

Section 4.1].

(i)⇒(viii). Let E be a (G, X)-module of type C and consider the extension problem

of Banach G-modules

A � � ��

α ���
��

��
��

B

σ

��

∃β��

E

where σ is a norm 1 projection which need not respect the module structure. (To be per-

fectly clear: the type C hypothesis regards only the C (X)-structure, whilst the extension

problem deals only with the G-structure.) Let μ ∈ C (X, �1G) be a finite sum
∑

gμg ⊗ δg.

We then define βμ on each b ∈ B by

βμ(b) :=
∑

g

(μg ⊗ δg) α(σ (g
−1b)).

In particular, βμ is linear and βμ|A = α if
∑

gμg = 1X. Moreover, the condition C implies

‖βμ‖ ≤ ‖μ‖ · ‖α‖. If now E is a dual E = V∗, then those conditions are closed in the weak-*

topology on L(B, E)∼= (B ⊗̂ V)∗. Therefore, taking β to be a weak-* accumulation point of

the family βμ where μ ranges over a net as in the definition of topological amenability,

it remains only to show that β is G-equivariant. For h∈ G and b ∈ B, we compute

βμ(hb)− hβμ(b)=
∑

g

(μg − hμh−1g)gα(σ(g
−1hb))

which by condition (C) is bounded in E-norm by

‖μ− hμ‖C (X,�1G) · ‖α‖ · ‖b‖B .

It follows indeed that β is equivariant.
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(viii)⇒(iv) and (vi)⇒(ii). Both are due to the fact that cohomology with values in

relatively injective modules vanishes in every positive degree (e.g., because the module

is a trivial resolution of itself). For (iv) we recall that E∗ is of type C.

(viii)⇒(vii)⇒(vi) and (iv)⇒(iii)⇒(ii)⇒(v) are immediate in view of Corollary 3 and

Remark 4.

(v)⇒(ix). Consider the exact sequence of Banach G-modules

0 −→ C (X, �1
0G)−→ C (X, �1G)−→ C (X)−→ 0,

where �1
0G is the kernel of the summation map (as a Banach space sequence it is even

split exact). Apply the bounded cohomology long exact sequence to the bidual sequence

and use the vanishing assumption for C (X, �1
0G)∗∗. This yields a short exact sequence of

G-invariants

0 −→ (C (X, �1
0G)∗∗)G −→ (C (X, �1G)∗∗)G −→ (C (X)∗∗)G −→ 0

and (ix) follows.

(ix)⇒(i). Let {μ j} j∈J be a net in C (X, �1G) converging to an element as in (ix) for

the weak-* topology of the bidual. We can assume that each μ j ranges in the functions in

�1G that sum up to one. Since gμ j − μ j converges weakly to zero for all g ∈ G, a standard

Hahn–Banach argument shows that, upon passing to a net of finite convex combinations,

we can assume that ‖gμ j − μ j‖ converges to zero for all g. Recall that C (X, �1G) is a

Banach lattice and that therefore all lattice operations are (norm-) continuous (see, e.g.,

[22, Vol. II] for Banach lattices). Moreover, they are G-equivariant. Recall further that

canonical embeddings into biduals are compatible with all Banach lattice structures.

In conclusion, replacing μ j by its absolute value, we can further assume that all μ j

are nonnegative, retaining all properties except that now the image Σμ j := ∑
G μ

j of

μ j in C (X) is only bounded below by 1X. However, the (equivariant) renormalization

μ j �→μ j/Σμ j is 2-Lipschitz on maps with Σμ j ≥ 1X and therefore we finally obtain a net

as required.

We could replace 1X in the assumption by any never vanishing f ∈ C (X); the

Lipschitz constant would then be 2/minx | f(x)|.
(i)⇒(x) is obtained by choosing a weak-* accumulation point and keeping in

mind the properties of Banach lattices recalled above. Since (x)⇒(ix) is tautological, this

completes the proof.
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4 Exact Groups and Further Remarks

The definition of exact groups goes back to Kirchberg–Wassermann [21]; it is equivalent

to the statement that the reduced C*-algebra of the group is exact for spatial tensor

products. Ozawa [26] and Anantharaman-Delaroche [1] proved that the group G is exact

if and only if its action on the Čech–Stone compactification βG is amenable. Higson–Roe

[16] established that the latter condition is equivalent to Yu’s Property A. Exactness has

deep implications for the group but at the same time it is notoriously difficult to produce

any nonexact group; Gromov succeeded in [12] using the relation to uniform embeddings

into Hilbert spaces.

In view of the equivalence with amenability of the action on βG, the proposi-

tions of the introduction characterize exact groups. In this special case, C (βG)∼= �∞G,

allowing some additional identifications. For instance, (G, βG)-modules are particularly

concrete and can be thought of as modules over the involutive Banach–Hopf algebra �1G.

Example 7. Let V be a Banach G-module. Any G-invariant �∞G-submodule of �∞(G,V)

is a (G, βG)-module of type C. It is generally not of the form C (βG,V). �

This example provides a link to the work of Douglas–Nowak [9]. Another article

investigating cohomological characterizations of exactness is [3].

Another obvious example of (G, βG)-module is provided by the various �pG.

Example 8. Let G be a non-Abelian free group. Then the G-action on X := βG is

amenable. On the other hand, H2
b(G, �

1G) is non-trivial, even though �1G is a dual

(G, X)-module. In fact, it is of type M and is the dual of the (G, X)-module c0(G)

of type C. More generally, H2
b(G, �

pG) is nontrivial for all p<∞ using the argument

of [25]. �

The algebra

A := C (βG, �1G)∼= �∞G ⊗̌ �1G ∼= ucG [�∞G],

which coincides with the “uniform algebra” �uG of [9], also admits additional realiza-

tions since now any element can be viewed as a kernel on G × G. We find thus:

A∼= C(�1G)∼=Lw*/w(�
∞G),
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where C denotes compact operators and Lw*/w the weak-*-to-weak continuous operators

(which are necessarily compact), compare pp. 90–91 in Grothendieck [14]. (The product,

meanwhile, remains G-twisted).

Example 9. The involution familiar from C*-crossed products is not A-bounded: if

S ⊆ G is a finite set, the diagonal
∑

g∈S δg ⊗ δg has unit norm but its image δe ⊗ ∑
g∈S δg−1

has norm |S|. �

Returning to G-actions on general compact spaces X, we conclude with sugges-

tions for further investigation.

Question 10. Let E be a (G, X)-module. In the spirit of Kakutani [19, 20], give a concrete

expression of the intrinsic properties C and M. �

Questions 11. (a) Characterize the amenability of A := C (X, �1G).

(b) Characterize (and define!) the co-amenability of the subalgebra �1G in A :=
C (X, �1G), embedded by tensoring with 1X. A natural candidate for the definition of

co-amenable subalgebras is: The inclusion morphism induces an injective restriction

morphism at the level of Banach algebra cohomology, for all dual modules over the

target. (This is the faithful translation of Proposition 3 in [24].) �
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