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Asymptotis in Knuth's parking problem for aravansJean Bertoin∗& Grégory Miermont†10th February 2005AbstratWe onsider a generalized version of Knuth's parking problem, in whih aravansonsisting of a random number of ars arrive at random on the unit irle. Theneah ar turns lokwise until it �nds a free spae to park. Extending a reent workby Chassaing and Louhard [8℄, we relate the asymptotis for the sizes of bloksformed by oupied spots with the dynamis of the additive oalesent. Aordingto the behavior of the aravan's size tail distribution, several qualitatively di�erentversions of eternal additive oalesent are involved.Keywords: Parking problem, additive oalesent, bridges with exhangeable inrements.M.S.C. ode: 60F17, 60J25.
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1 INTRODUCTION 21 IntrodutionThe original parking problem of Knuth an be stated as follows. Consider a parking lotwith n spaes, identi�ed with the yli group Z/nZ. Initially the parking lot is empty,andm ≤ n ars in a queue arrive one by one. Car i tries to park on a uniformly distributedspae Li among the n possible, independently of other ars, but if the spae is alreadyoupied, then it tries plaes labeled Li + 1, Li + 2, . . . until it �nally �nds a free spotto park. As ars arrive, bloks of onseutive oupied spots are forming. It appearsthat a phase transition ours at the stage where the parking lot is almost full, morepreisely when the number of free spots is of order √n. Indeed, while the largest blokof oupied spots is of order logm with high probability as long as √
m = o(n − m), ablok of size approximately n is present (while the others are of order at most log n) withhigh probability when n − m = o(

√
m). In the meanwhile, preisely when n − m is oforder λ√m with λ > 0, a lustering phenomenon ours as λ deays. The behavior of thislustering proess has been studied preisely by Chassaing and Louhard [8℄. It turns outthat the proess of the relative sizes of oupied bloks is related to the so-alled standardadditive oalesent [10, 1℄.The model originates from a problem in Computer Siene: spaes in the parking lotshould be thought of as elementary memory spaes, eah of whih an be used to storeelementary data (ars). Roughly, our aim in this work is to investigate the more generalsituation where one wants to store larger �les, eah requiring several elementary memoryspaes. In other words, single ars are replaed by aravans of ars, i.e. several ars mayarrive simultaneously at the same spot. In this diretion, it will be onvenient to onsidera ontinuous version of the problem, that goes as follows. Let p1, . . . pm be a sequene ofpositive real numbers with sum 1, and s1, . . . , sm, m distint loations on the unit irle

T := R/Z. Imagine that m drops of paint with masses p1, . . . , pm, fall suessively atloations s1, . . . , sm. Eah time a drop of paint falls, we brush it lokwise in suh a waythat the resulting painted portion of T is overed by a unit density of paint. So at eahstep the drop of paint is used to over a new portion of the irle and the total length ofthe painted part of the irle when i ≤ m drops have fallen is p1 + · · ·+pi. In this setting,drops of paint play the role of aravans, and the painted portion of the irle orrespondsto oupied spots in the parking lot.More preisely, we onsider an inreasing sequene (A0, . . . , Am) of open subsets of T,starting from A0 = ∅ and ending at Am = T, whih an be thought of as the suessivepainted portions of the irle. Given Ai and the loation si+1 from where the i + 1-thdrop of paint will be brushed, we paint as many spae as possible to the right of si+1 withthe quantity pi+1 of paint, without overing the already painted parts, i.e. the bloks of
Ai. Alternatively, we break the i+1-th aravan into several piees, so that to �ll as muhas possible the holes left by T \ Ai after si+1, when reading in lokwise order. The lastar to park arrives at some loation ti+1, and we let Ai+1 be the union of Ai and the arbetween si+1 and ti+1, see Figure 1. More formal de�nitions will ome in Set. 2.In partiular, Ai is a disjoint union of open intervals and Leb(Ai) = p1 + . . . + pi.Let Λp(i)(= Λ(p1, . . . , pm, s1, . . . , sm, i)) be the sequene of the Lebesgue measures of theonneted omponents of Ai, ranked by dereasing order. It will be onvenient to view
Λp(i) as an in�nite sequene, by ompleting with an in�nite number of zero terms.Now onsider the following random problem. Let ℓ > 0 be a random variable with



1 INTRODUCTION 3
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Figure 1: Arrival, splitting and parking of the i+ 1-th aravan in the proess�nite expetation µ1 = E[ℓ]. We say that ℓ ∈ D2 whenever ℓ has a �nite seond moment
µ2 = E[ℓ2]. For α ∈ (1, 2), we say that ℓ ∈ Dα whenever

P(ℓ > x) ∼
x→∞

cx−α (1)for some 0 < c < ∞. This implies that ℓ is in the domain of attration of a spetrallypositive stable random variable with index α, and we stress that our results an beextended under this more general hypothesis; (1) is only intended to make things easier.We suppose from now on that ℓ ∈ Dα for some α ∈ (1, 2], and take a random iid sample
ℓ1, ℓ2, . . . of variables distributed as ℓ, and independently of this sequene, iid uniformrandom variables on [0, 1), U1, U2, . . .. For ε > 0, set

Tε = inf{i : ℓ1 + . . .+ ℓi ≥ 1/ε},so by the elementary renewal theorem, Tε ∼ 1/(εµ1). Then introdue the sequene
(ℓ∗i , 1 ≤ i ≤ Tε) de�ned by

ℓ∗i = ℓi for 1 ≤ i ≤ Tε − 1 and ℓ∗Tε
= ε−1 − (ℓ1 + . . .+ ℓTε−1),so the terms of ℓ∗ sum to 1/ε.Following Chassaing and Louhard [8℄, we are interested in the formation of maro-sopi painted omponents in the limit when ε tends to 0, at times lose to Tε, i.e. whenthe irle is almost entirely painted. Spei�ally, we let

X(ε)(t) = Λp(Tε − ⌊tε−1/α⌋) , t ≥ 0 ,for Λp de�ned as above with the data m = Tε, pi = εℓ∗i , si = Ui. Observe that Tε− [tε−1/α]dereases when t inreases, and therefore, in order to investigate the formation of paintedomponents, we should onsider the proess (X(ε)(t), t ≥ 0
) bakwards in time. This iswhat we shall do in Theorem 1, using the exponential time hange t→ e−t.



1 INTRODUCTION 4Before desribing our main result, let us �rst reall some features of the additiveoalesent. The additive oalesent C is a Markov proess with values in the in�niteordered simplex
S =

{
s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,

∞∑

i=1

si ≤ 1

}endowed with the uniform distane, whose evolution is desribed formally by: given thatthe urrent state is s, two terms si and sj , i < j, of s are hosen and merge into a singleterm si + sj (whih implies some reordering of the resulting sequene) at a rate equal to
si + sj . A version (C(t), t ∈ R) of this proess de�ned for times desribing the whole realaxis is alled eternal. We refer to [1, 3℄ for bakground.As shown in [4℄, eternal additive oalesents an be enoded by ertain bridges. Speif-ially, let B = (B(x), 0 ≤ x ≤ 1)) be a àdlàg real-valued proess with exhangeableinrements, suh that B(0) = B(1) = 0. Suppose further that B has in�nite variationand no negative jumps a.s. Then B attains its overall in�mum at a unique loation V(whih is uniformly distributed on [0, 1]), and B is ontinuous at V . Consider the so-alledVervaat transform whih maps the bridge B into an exursion E de�ned by

E(x) = B(V + x) − B(V ) for 0 ≤ x ≤ 1,where the addition V + x is modulo 1. Finally, we let for t ≥ 0

E (t)
x = E(x) − tx for 0 ≤ x ≤ 1,and introdue F(t) as the random element of S de�ned by the ranked sequene of thelengths of the onstany intervals of the proess E (t) = (inf0≤y≤x E (t)(y), 0 ≤ x ≤ 1). Here,a onstany interval means a onneted omponent of the omplement of the support ofthe Stieltjes measure d(−E). Finally, if we de�ne C(t) = F(e−t), then C = (C(t),−∞ <

t <∞) is an eternal additive oalesent (see Setion 6.1 for omments and details).In this work, eternal additive oalesent assoiated to ertain remarkable bridges willplay a key role. More preisely, we write C(2) = (C(2)(t),−∞ < t < ∞) for the eternaladditive oalesent C onstruted above when B = B(2) is a standard Brownian bridge;so that C(2) is the so-alled standard additive oalesent (f. [4, 1℄). Next, for 1 < α < 2,we denote by σ(α) = (σ(α)(t), t ≥ 0) a standard spetrally positive stable Lévy proesswith index α, that is σ(α) has independent and stationary inrements, no negative jumps,and
E(exp(−λσ(α)(t))) = exp(tλα) , for all λ ≥ 0.We all standard stable loop 1 of index α the proess B(α) de�ned by
B(α)(x) = σ(α)(x) − xσ(α)(1), for 0 ≤ x ≤ 1. (2)We �nally write C(α) = (C(α)(t),−∞ < t < ∞) for the eternal additive oalesent Construted above when the bridge B is the standard stable loop of index α.We are now able to state our main result.1We all B(α) a loop and not a bridge to avoid a possible onfusion: even though B(α) starts from

0, ends at 0 and has exhangeable inrements, it does not have the same law as the stable proess σ(α)onditioned on σ(α)(1) = 0!



1 INTRODUCTION 5Theorem 1 The proess (X(ε)(t), 0 ≤ t < Tε) onverges as ε ↓ 0 in the sense of weakonvergene of �nite-dimensional distributions to some proess X = (X(t), 0 ≤ t < ∞).The exponential time-hanged proess (X(e−t),−∞ < t < ∞) is an eternal additiveoalesent; more preisely:(i) When α = 2, (X(e−t),−∞ < t <∞) is distributed as
(C(2)(t+

1

2
log(µ2/µ1) − logµ1),−∞ < t <∞).(ii) When 1 < α < 2, (X(e−t),−∞ < t <∞) is distributed as

(C(α)(t+
1

α
log

(
Γ(2 − α)c

(α− 1)µ1

)
− log µ1),−∞ < t <∞).It might be interesting to disuss further the role of the parameter α and the inter-pretation in terms of phase transition. As it was already mentioned, the renewal theorementails than the number of drops of paint needed for the omplete overing is Tε ∼ 1/(εµ1),a quantity whih is not sensitive to α. It is easy to show that for every a < 1, there are nomarosopi painted omponents when only [aTε] drops of paint have fallen, so the phasetransition (i.e. the number of drops whih is needed for the appearane of marosopiomponents) ours for numbers lose to Tε. More preisely, the regime for the phasetransition is of order Tε − ε−1/α; so the phase transition ours loser to Tε when α islarger. We would like also to stress that one-dimensional distributions of the limiting ad-ditive oalesent proess X depend on α, but not its semigroup whih is the same for all

α ∈ (1, 2]. A heuristi explanation might be the following: the number of drops needed toomplete the overing one the phase transition has ourred is too small (of order ε−1/α)to observe signi�ant di�erenes in the dynamis of aggregation of marosopi paintedomponents.Remark. Our model bears some similarity with another parking problem on the irle,where drops of paints fall uniformly on the irle and then are brushed lokwise, butwhere overlaps are now allowed (some points may be overed this way several times),all it the �random overing of an interval� problem. However, as showed in [6℄, this lastmodel has very di�erent asymptotis from those of the parking problem, as it turns outthat the random overing of an interval is related to Kingman's oalesent rather than theadditive oalesent. A shared feature is that the phase transition of the random overingproblem appears also when the irle is almost ompletely overed, but for example thedi�erent fragments are ultimately �nite in number rather than in�nite.We also mention yet another parking problem, �rst onsidered by Rényi (see [15, 9℄).In an be formulated as follows: aravans with size ε are plaed on T (the original workrather onsiders (0, 1)) one after another, but the loations si where ars park are hosenuniformly among spaes that do not indue overlaps and splitting of aravans, i.e. so thatthe length of the ar from si to ti is exatly ε. This is done until no unovered sub-ar of
T with size ≥ ε remains. This proess does not involve oalesing bloks of ars, and oneis rather interested in the properties of the random number of ars that are able to park.The method in [8℄ relies on an enoding parking funtion whih is shown to be asymp-totially related to a funtion of standard Brownian bridge, and a representation of thestandard additive oalesent due to Bertoin [4℄. Our approah to Theorem 1 is lose in



2 BRIDGE REPRESENTATION 6spirit to that of [8℄, and uses the representation of eternal additive oalesent that wepresented above; we brie�y sketh it here. First, we enode the proess X(ε) by a bridgewith exhangeable inrements in Set. 2. In Set. 3, we show that this bridge onverges tosome bridge with exhangeable inrements that an be represented in terms of the stan-dard Brownian bridge (for α = 2) or the standard stable loop (for 1 < α < 2). Theorem1 then follows readily.The rest of this work is organized as follows. In Setion 2 we provide a representation ofthe painted omponents in terms of a bridge and its Vervaat's transform. The onvergeneof these bridges when ε tends to 0 is established in Setion 3, and that of the sequene ofthe sizes of the painted omponents in Setion 4. Setion 5 is devoted to a brief disussionof the analogous disrete setting (i.e. Knuth's parking for aravans), and �nally someomplements are presented in Setion 6.2 Bridge representationWe develop a representation of the parking proess with the help of bridges with ex-hangeable inrements, whih is ruial to our study.Let us �rst give the proper de�nition the of sequene (∅ = A0, . . . , Am) of the In-trodution. We identify the irle T with [0, 1) and write pT : R → T for the anonialprojetion. If A is a measurable subset of T (identi�ed with [0, 1)), let FA be its repartitionfuntion de�ned by FA(x) = Leb([0, x]∩A) for 0 ≤ x < 1, where Leb is Lebesgue measure.Also, extend FA on the whole real line with the formula FA(x + 1) = FA(x) + FA(1−).Given Ai for some 0 ≤ i ≤ m− 1, let
ti+1 = inf{x ≥ si+1 : FAi

(x) + pi+1 − (x− si+1) ≤ FAi
(si+1)}.Notie that the ar pT((si+1, ti+1)) oriented lokwise from si+1 to pT(ti+1) has length

ti+1 − si+1 ≥ pi+1. Then let Ai+1 be the interior of the losure of pT((si+1, ti+1)) ∪ Ai.The point in taking the losure and then the interior is that we onsider that two paintedonneted omponents of T that are at distane 0 onstitute in fat a single paintedonneted omponent.De�ne
hp

i+1(x) = FAi
(x) − FAi

(si+1) + pi+1 − (x− si+1) si+1 ≤ x ≤ ti+1,and hp

i+1(x) = 0 in [ti+1, si+1 + 1), so hp

i is a àdlàg funtion (right-ontinuous with left-limits) on [si+1, si+1 + 1). Consider it as a funtion on T by letting hp

i+1(x) = hp

i+1(y)where y is the element of [si+1, si+1 + 1) ∩ p−1
T

(x). The quantity hp

i+1(x) an be thoughtof as the quantity of ars of the i+ 1-th aravan that try to park at x. See Figure 2.We onsider the pro�le
Hp

i =

i∑

j=1

hp

j (3)of the parking at step 0 ≤ i ≤ m, so Hp

i (x) is the total quantity of ars that have tried(suessfully or not) to park at x (with the onvention that Hp

i (1) = Hp

i (0)) before the
i+ 1-th aravan has arrived.
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Hp

i

Ai Ai AiAi

pi+1

si+1 ti+1

hp

i+1

Figure 2: The funtion hp

i+1 (thik line) orresponding to the i+1-th aravan of Figure 1.The bloks of Ai are represented under the axis, and the dashed lines represent the pro�le
Hp

i (it gives more information than Ai alone). The braket under the �gure indiates how
Ai+1 is obtained by formation of a new blok omprising the bloks of Ai between si+1and ti+1Lemma 1 For 1 ≤ i ≤ m,(i) the set Ai is the interior of the support of Hp

i .(ii) Hp

i (ti−) = 0.(iii) Hp

i jumps at times s1, . . . , si with respetive jump magnitudes p1, . . . , pi, and has adrift with slope −1 on its support.That is, if [v, v′] ⊆ supp (Hp

i ),
Hp

i (x+ v) = Hp

i (v−) − x+

i∑

j=1

pj1{v≤sj≤v+x} 0 ≤ x ≤ v′ − v.Proof. Properties (i) and (iii) are easily shown using a reursion on i and splittingthe behavior of hp

i on Ai−1 and Ai \ Ai−1. We give some details for (ii). For i ≥ 1,notie that by de�nition ti annot be a point of inrease of FAi−1
, i.e. a point suh that

FAi−1
(ti − ε) < FAi−1

(ti) < FAi−1
(ti + ε) for every ε > 0. Therefore, ti /∈ Ai−1 and

hp

j (ti) = hp

j (ti−) = 0 for j < i. Sine it follows by ontinuity of FAi−1
that hp

i (ti−) = 0,(ii) is proved. �Consider the bridge funtion:
bpi (x) = −x+

i∑

j=1

pj1{x≥sj} 0 ≤ x < 1,whih starts from bpi (0) = 0 and ends at bpi (1−) = p1 + . . . + pi − 1. We extend bpi to afuntion on R by setting bpi (x+ 1) = bpi (x) + bpi (1−). For any v ∈ [0, 1), it is easily seenusing (iii) in Lemma 1 that
Hp

i (x+ v) = Hp

i (v−) + bpi (x+ v) −
(

0 ∧ inf
u∈[v,v+x]

(Hp

i (v−) + bpi (u))

)
.Suppose v is suh that Hp

m(v−) = 0 (here Hp

m(0−) = Hp

m(1−)), all suh a number a lastempty spot. By (ii), Lemma 1, the set of last empty spots is not empty sine it ontains



3 CONVERGENCE OF BRIDGES 8
tm. On the other hand, by (i) in the same lemma, the support of Hp

m is the losure of
Am whih has measure 1, hene it is T. By (iii), we onlude by letting v = 0, v′ ↑ 1 that
Hp

m(x) = Hp

m(0) + bpm(x) for 0 ≤ x < 1, so for x = tm−, Hp

m(0) = −bpm(tm−) = − inf bpmneessarily sine Hp

m is non-negative. This implies that the last empty spots are those v'ssuh that bpm(v−) = inf bpm. We hoose one of them by letting
V = inf{x ∈ [0, 1] : bpm(x−) = inf

u∈[0,1]
bpm(u)},the �rst loation when the in�mum of bpm is reahed. We have provedLemma 2 For any 0 ≤ x < 1, 1 ≤ i ≤ m,

Hp

i (x+ V ) = bpi (x+ V ) − inf
u∈[V,V +x]

bpi (u).Reall that we are interested in Λp(i), the ranked sequene of the lengths of the intervalomponents of Ai, where Ai an be viewed as the painted portion of the irle after i dropsof paint have fallen, or the set of oupied spots after the i-th aravan has arrived. Lemma1(i) enables us to identify Ai as the interior of support of the funtion Hp

i , and sine theLebesgue measure of the interval omponents of the interior of the support of Hp

i is nota�eted by a yli shift, we reord the following simple identi�ationLemma 3 For every i = 1, . . . , m, Λp(i) oinides with the ranked lengths of the intervalsof onstany of the funtion
x 7−→ inf

u∈[V,V +x]
bpi (u) , x ∈ [0, 1].3 Convergene of bridgesWe now onsider a resaled randomized version of the bridges introdued above. Let

B(ε) = ε−1+1/αbpm, where bpm is obtained as above with data m = Tε, pi = εℓ∗i , si = Ui, andthese quantities are introdued in the Introdution. So for 0 ≤ x ≤ 1

B(ε)(x) = −ε−1+1/αx+

Tε∑

i=1

ε1/αℓ∗i1{x≥Ui} = ε1/α
Tε∑

i=1

ℓ∗i (1{x≥Ui} − x),beause ℓ∗1 + . . .+ ℓ∗Tε
= 1/ε. Reall that B(2) denotes the standard Brownian bridge, and

B(α) the standard stable loop with index α as de�ned in (2).Lemma 4 As ε ↓ 0, the bridge B(ε) onverges weakly on the spae D of àdlàg paths en-dowed with Skorokhod's topology, to a bridge with exhangeable inrements B = (B(x), 0 ≤
x ≤ 1). More preisely:(i) If α = 2 then B is distributed as √µ2/µ1 B(2).(ii) If α ∈ (1, 2), then B is distributed as

(
Γ(2 − α)c

(α − 1)µ1

) 1

α

B(α) .



3 CONVERGENCE OF BRIDGES 9The proof of Lemma 4(ii) will use the following well-known representation:
(

Γ(2 − α)c

(α− 1)µ1

) 1

α

B(α)(x) =

∞∑

i=1

∆i

(1{x≥Ui} − x
)
, 0 ≤ x ≤ 1,where (Ui, i ≥ 1) is a sequene of i.i.d. uniform(0, 1) r.v.'s, (∆i, i ≥ 1) is the rankedsequene of the atoms of a Poisson measure on (0,∞) with intensity αcµ−1

1 x−1−αdx, andthese two sequenes are independent. More preisely, the series in the right-hand sidedoes not onverge absolutely, but is taken in the sense
∞∑

i=1

∆i

(1{x≥Ui} − x
)

= lim
n→∞

n∑

i=1

∆i

(1{x≥Ui} − x
)
,where the limit is uniform in the variable x, a.s. This representation follows immedi-ately from the elebrated Lévy-It� deomposition, spei�ed for the stable proess σ(α),as the proess of the jumps of the latter is a Poisson point proess on R+ with intensity

α(α−1)
Γ(2−α)

x−1−αdx. See also Kallenberg [11℄.Proof. Following Kallenberg [11℄, we represent the jump sizes of the bridge B(ε) by therandom point measure
ψε =

Tε∑

i=1

(ε1/αℓ∗i )
2δε1/αℓ∗i

.By Theorem 2.3 in [11℄, we have to show:if α = 2, then ψε → (µ2/µ1)δ0, (4)and if α < 2, then ψε → ψ :=

∞∑

i=1

∆2
i δ∆i

, (5)where the onvergene is in law with respet to the weak topology on measures on [0,∞),and in (5), (∆i, i ≥ 1) is the ranked sequene of the atoms of a Poisson measure on (0,∞)with intensity αcµ−1
1 x−1−αdx.Case (i) is easier to treat. Indeed, notie that the total mass of ψε is

ψε(R+) = ε

Tε∑

i=1

(ℓ∗i )
2 = εTε

(ℓ∗Tε
)2 +

∑Tε−1
i=1 ℓ2i

Tε
.Sine ℓ∗i ≤ ℓi, the law of large numbers gives ψε(R+) → µ2/µ1.Now let

m∗
ε :=

√
ε max

1≤i≤Tε

ℓ∗i and Mn :=
√
ε max

1≤i≤n
ℓi,so to prove (4), it su�es to show that m∗

ε → 0 in probability. Notie that m∗
ε ≤MTε .Let η > 0 and K > µ−1

1 . Then
P(m∗

ε > η) = P(m∗
ε > η, Tε ≤ Kε−1) + P(m∗

ε > η, Tε > Kε−1)

≤ P(M⌊Kε−1⌋ > η) + P(Tε > Kε−1).



3 CONVERGENCE OF BRIDGES 10The seond term onverges to 0 sine εµ1Tε → 1 a.s. For the �rst term, notie that
P(M⌊Kε−1⌋ ≤ η) = (1 − P(ℓ > η/

√
ε))⌊Kε−1⌋.Taking logarithms and heking that ε−1P(ℓ2 > η2/ε) → 0 as ε ↓ 0 (whih holds sine

E[ℓ2] <∞), we �nally obtain that P(M⌊Kε−1⌋ ≤ η) → 1. This ompletes the proof of (4).Now we turn our attention to (5). It su�es to show that for every funtion f :
[0,∞) → [0,∞), say of lass C1 with bounded derivative

lim
ε→0

E (exp(−〈ψε, f〉)) = E (exp(−〈ψ, f〉)) ; (6)see for instane Setion II.3 in Le Gall [12℄. In this diretion, reall from the lassialformula for Poisson random measures that
E (exp(−〈ψ, f〉)) =

αc

µ1

∫ ∞

0

(1 − exp(−y2f(y)))y−1−αdy.To start with, we observe from the renewal theorem that ε1/αℓ∗Tε
onverges to 0 inprobability as ε→ 0, so in (6), we may replae ψε by

ψ′
ε =

Tε−1∑

i=1

(ε1/αℓi)
2δε1/αℓi

.Next, for every a ≥ 0, we onsider the random measure
ψε,a =

a/ε∑

i=1

(ε1/αℓi)
2δε1/αℓi

.Again, by the (elementary) renewal theorem, εTε → µ−1
1 in probability, so for every η > 0,the event

〈ψε,µ−1

1
−η, f〉 ≤ 〈ψ′

ε, f〉 ≤ 〈ψε,µ−1

1
+η, f〉 (7)has a probability whih tends to 1 as ε→ 0.Now

E (exp(−〈ψε,a, f〉)) = E
(
exp(−f(ε1/αℓ)(ε1/αℓ)2)

)a/ε
.Taking logarithms, we have to estimate

a

ε
E
(
1 − exp(−f(ε1/αℓ)(ε1/αℓ)2)

)

=
a

ε

∫ ∞

0

ε2/α(2xf(ε1/αx) + ε1/αx2f ′(ε1/αx)) exp(−(ε1/αx)2f(ε1/αx))P(ℓ > x)dx

=
a

ε

∫ ∞

0

(2yf(y) + y2f ′(y)) exp(−y2f(y))P(ℓ > y/ε1/α)dx.By (1) and dominated onvergene, we see that the preeding quantity onverges as ε→ 0towards
ac

∫ ∞

0

(2yf(y) + y2f ′(y)) exp(−y2f(y))y−αdx = αac

∫ ∞

0

(1 − exp(−y2f(y)))y−1−αdx.Taking a = µ−1
1 ± η, using (7) and letting η tend to 0, we see that (6) holds, whihompletes the proof of the statement. �



4 CONVERGENCE OF X(ε) 114 Convergene of X(ε)In this setion, we dedue Theorem 1 from Lemmas 3,4. Reall the de�nition of the bridge
bpi in Setion 2. For i ≤ Tε, let B(ε)

i be the bridge ε−1+1/αbpi with data pj = εℓ∗j , sj = Uj ,so B(ε)
Tε

= B(ε). Let also Vε be the left-most loation of the in�mum of B(ε), and
VB(ε)(x) = B(ε)(x+ Vε) − inf B(ε), 0 ≤ x ≤ 1the Vervaat transform of B(ε). By Lemma 3, X(ε)(t) = Λp(Tε − ⌊tε−1/α⌋) oinides withthe ranked sequene of lengths of onstany intervals of the in�mum proess of
B

(ε)

Tε−⌊tε−1/α⌋
(x+ Vε) − inf B(ε), 0 ≤ x ≤ 1,where the onstant − inf B(ε) has no e�et and is added for future onsiderations.Lemma 5 For every t ≥ 0, the di�erene

B(ε)(x) − B
(ε)

Tε−⌊tε−1/α⌋
(x) = ε1/α

⌊tε−1/α−1⌋∑

j=0

ℓ∗Tε−i1{x≥UTε−i} 0 ≤ x ≤ 1onverges in probability for the uniform norm to the pure drift x 7→ tµ1x as ε ↓ 0.Proof. Reall from the renewal theorem that ε1/αℓTε → 0 in probability as ε ↓ 0.Therefore, we might start the sum appearing in the statement from j = 1. Now, thesequenes (ℓ1, . . . , ℓTε−1) and (ℓTε−1, . . . , ℓ1) have the same distribution. Up to doing thesubstitution, Lemma 5 for �xed s is therefore a simple appliation of the strong law oflarge numbers. The onlusion is obtained by standard monotoniity arguments. �As a onsequene of Lemmas 4, 5, and the fat that s 7→ tµ1s is ontinuous, theproess
B

(ε)

Tε−⌊tε−1/α⌋
(x+ Vε) − inf B(ε) = VB(ε)(x) −

(
B(ε)(x+ Vε) −B

(ε)

Tε−⌊tε−1/α⌋
(x+ Vε)

)onverges in the Skorokhod spae to
E (tµ1) = (E(x) − tµ1x, 0 ≤ x ≤ 1),where

E(x) = B(x+ V ) − inf B, 0 ≤ x ≤ 1is the Vervaat transform of the limiting bridge B whih appears in Lemma 4, V being thea.s. unique loation of its in�mum. Now letting E (t) be the in�mum proess of E (t) and
F(t) be the dereasing sequene of lengths of onstany intervals of E (t), we haveProposition 1 The proess (X(ε)(t), t ≥ 0) onverges to (F(µ1t), t ≥ 0) in the sense ofweak onvergene of �nite-dimensional marginals.



5 RELATED RESULTS FOR A DISCRETE PROBLEM 12Proof. The tehnial point is that Skorokhod onvergene of B(ε)

Tε−⌊tε−1/α⌋
(x+Vε)−inf B(ε)to E (tµ1), though it does imply onvergene of respetive in�mum proesses, does nota priori imply that of the ranked sequene of lengths of onstany intervals of theseproesses. However, this onvergene does hold beause for every t ≥ 0, if (a, b) is suh aonstany interval, then E (tµ1)(x) > E (tµ1)(a) for x ∈ (a, b), a.s. See e.g. Lemmas 4 and 7in [5℄. �This proposition proves Theorem 1. Indeed, reall from Lemma 4 that B = cαBα,where c2 =

√
µ2/µ1 and for 1 < α < 2

cα =

(
Γ(2 − α)c

(α− 1)µ1

) 1

α

.Then plainly, F(e−t) = C(α)(t + log cα), and hene the limiting proess X(e−t) is dis-tributed as F(µ1e
−t) = C(α)(t+ log cα − logµ1).5 Related results for a disrete problemIn situations involving parking problems, it may be more natural to onsider disreteparking lots, i.e. Z/nZ instead of the unit irle, and aravans with integer sizes, e.g.as in Knuth's original parking problem. Eah aravan hooses a random spot, uniformon Z/nZ, and tries to park at that spot. Studying the frequenies of bloks of ars �tswith our general framework by taking ℓ with integer values, ε = 1/n and si = ⌊nUi⌋/n.Rename by Tn the former quantity Tε (the number of aravans). Let

B̃(n)(x) = n1/α

Tn∑

i=1

(
ℓ∗i
n
1{x≥⌊nUi⌋/n} − x

)
0 ≤ x ≤ 1

B(n)(x) = n1/α
Tn∑

i=1

(
ℓ∗i
n
1{x≥Ui} − x

)
0 ≤ x ≤ 1,so B(n) would be B(1/n) in the notation above. The analog of Lemma 5 is still true whenreplaingB(n) by B̃(n), without essential hange in the proof. Thus to obtain the very sameonlusions as in the preeding setions, it su�es to hek a result similar to Lemma 4.Namely, we must prove that B̃(n) → B in the Skorokhod spae as n→ ∞. Now it is easyto hek that a.s., |B̃(n)(x)−B(n)(⌈nx−⌉/n)| ≤ n1/α/n for every n ≥ 1, x ∈ [0, 1], beauseno Ui is rational a.s. Therefore, it su�es to hek that B(n)(⌈n · +⌉/n) onverges to Bin distribution for the Skorokhod topology on D. Up to using Skorokhod's representationtheorem, this is done by taking fn = B(n) and κn(x) = ⌈nx+⌉/n in the next lemma.Lemma 6 Let (fn, n ≥ 1) be a sequene of funtions onverging in D to f . For n ∈ Nlet also κn be a right-ontinuous non-dereasing funtion (not neessarily bijetive) from

[0, 1] to [0, 1], suh that the sequene (κn) onverges to the identity funtion uniformly on
[0, 1]. Then fn ◦ κn → f in D.Proof. First onsider the ase fn = f for every n. Fix ε > 0. Let κ−1

n be the right-ontinuous inverse of κn de�ned by
κ−1

n (x) = inf{y ∈ [0, 1] : κn(y) > x}.



6 COMPLEMENTS 13It is easy to prove that κn(κ−1
n (x)−) ≤ x ≤ κn(κ−1

n (x)) for every x. Sine f is àdlàg,one may �nd 0 = x0 < x1 < . . . < xk = 1 suh that the osillation ω(f, [xi, xi+1)) < ε for
0 ≤ i ≤ k − 1, where

ω(f, A) = sup
x,y∈A

|f(x) − f(y)|.Sine κn approahes the identity, for n large we may assume κn(κ−1
n (xi)) < κn(κ−1

n (xi+1)−)for 0 ≤ i ≤ k− 1. De�ne a time-hange λn (i.e. an inreasing bijetion between [0, 1] and
[0, 1]) by interpolating linearly between the points (0, 0), (κ−1

n (xi), xi), 1 ≤ i ≤ k−1, (1, 1).Now let x ∈ [0, 1]. Suppose κ−1
n (xi) ≤ x < κ−1

n (xi+1) for some 0 ≤ i ≤ k − 1, andnotie that xi ≤ κn(κ−1
n (xi)) ≤ κn(x) < κn(κ−1

n (xi+1)−) ≤ xi+1. Therefore, κn(x) belongsto [xi, xi+1) as well as λn(x) by de�nition of λn, and
|f(κn(x)) − f(λn(x))| ≤ ω(f, [xi, xi+1)) ≤ ε.Else, one must have x < κ−1

n (0) or x ≥ κ−1
n (1), and the result is similar. Finally, doing thesame reasoning for ε = εn onverging to 0 slowly enough gives the existene of some time-hanges λn onverging to the identity uniformly suh that supx∈[0,1] |f(κn(x))−f(λn(x))| ≤

2εn, hene giving onvergene of f ◦ κn to f in the Skorokhod spae.In the general ase, for every n ≥ 0 let λn be a time-hange suh that λn onverges tothe identity as n → ∞ and fn ◦ λn onverges to f uniformly. Take κ′n = λ−1
n ◦ κn. Then

fn ◦ κn − f ◦ κ′n → 0 uniformly, so it su�es to show that f ◦ κ′n → f in D, whih is doneby the former disussion. �In partiular, we reover and extend a ertain number of results from [8℄.6 ComplementsIn this setion, we would like to provide some information on the eternal additive oales-ents C(α) for 1 < α < 2, whih appear in Theorem 1.6.1 Mixture of extremesTo start with, we should like to speify the representation of C(α) as a mixture of so-alled extreme eternal additive oalesents ([3℄, [5℄). In this diretion, let us �rst onsidera sequene θ = (θ0, θ1, θ2, . . .) of non-negative numbers satisfying∑i≥0 θ
2
i = 1 andeither θ0 > 0 or ∑

i≥0

θi = ∞. (8)Following Kallenberg [11℄ we assoiate to θ a bridge with exhangeable inrements
Bθ(x) = θ0β(x) +

∑

i≥1

θi(1{x≥Ui} − x) 0 ≤ x ≤ 1 (9)where (Ui, i ≥ 1) denotes a sequene of iid uniform variables and β is an independentstandard Brownian bridge. We write Cθ for the eternal additive oalesent assoiated tothe bridge B = Bθ as explained in the Introdution and all suh Cθ extreme.Aording to [3, Theorem 15℄, every eternal version of the additive oalesent C anbe obtained as a mixing of shifted versions of extreme eternal additive oalesents Cθ, i.e.
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C an be expressed in the form (Cθ∗(t − t∗), t ∈ R) with θ

∗, t∗ random. Equivalently, Can be viewed as the eternal additive oalesent onstruted in the Introdution from thebridge with exhangeable inrements B = et∗Bθ∗ . As observed by Aldous and Pitman [3℄,the mixing variables θ
∗, t∗ an be reovered from the initial behavior of C:

et∗θ∗i = lim
t→−∞

e−tCi(t) and e2t∗ = lim
t→−∞

e−2t
∞∑

i=1

C2
i (t) .In the ase of the standard stable loop B(α) with 1 < α < 2, reall from the Lévy-It�deomposition that θ∗0 = 0 and (et∗θ∗1, e

t∗θ∗2, . . .) = (∆1,∆2, . . .) is the ranked sequeneof the atoms of a Poisson random measure on (0,∞) with intensity α(α−1)
Γ(2−α)

x−1−αdx. Inpartiular,
e2t∗ =

∞∑

i=1

∆2
i (10)has the law of a (positive) stable variable with index α/2 and

θ∗i = ∆i/e
t∗ , i = 1, 2, . . . (11)is suh that the sequene of squares ((θ∗1)

2, (θ∗2)
2, . . .) is distributed aording to thePoisson-Dirihlet law PD(α/2, 0); see Pitman and Yor [14℄.We also stress that every oalesent Cθ an be obtained as a limit of appropriatearavan parking problems, whih are quite natural given the results of [3, 5℄. Preisely,suppose that a sequene of probabilities pn = (pn

1 , . . . , p
n
mn

) satisfying pn
1 ≥ . . . ≥ pn

mn
> 0is given, and satis�es

max
1≤i≤mn

pn
i →

n→∞
0 and σ(pn)−1pn

i →
n→∞

θi i ≥ 1 (12)for a sequene θ as desribed above, and where σ(p) =
√∑m

i=1 p
2
i when p = (p1, . . . , pm).For every n, let τn be a uniform permutation on {1, 2, . . . , mn}. Consider the parking prob-lem where the aravans whih try to park suessively have magnitudes pn

τn(1), p
n
τn(2), . . ..Let U1, U2, . . . be independent uniform(0, 1) random variables independent of τn, so wemay onsider the bridge with exhangeable inrements

B(n)(s) = σ(pn)−1

(
−x+

mn∑

i=1

pn
τn(i)1{s≥Ui}

)
, 0 ≤ s ≤ 1.Kallenberg's theorem shows that under the asymptoti assumptions on pn, B(n) onvergesin distribution to the bridge Bθ de�ned above.Now for t ≥ 0, let In

t = inf{i ≥ 1 :
∑mn

j=i+1 p
n
τn(j) ≤ t}. The following analogue ofLemma 5 holds.Lemma 7 For every t ≥ 0, the proess

σ(pn)−1
mn∑

i=In
t +1

pn
τn(i)1{s≥Ui} , 0 ≤ s ≤ 1onverges in probability for the uniform norm to the pure drift s 7→ ts as n→ ∞.



6 COMPLEMENTS 15Proof. The key to this lemma is to show that
max
i≥In

t

σ(pn)−1pn
τn(i) → 0 (13)in probability as n → ∞. The result is then obtained via the so-alled �weak law oflarge numbers for sampling without replaement�: if xn

i , 1 ≤ i ≤ n is a sequene withsum t satisfying max1≤i≤n x
n
i → 0 as n → ∞, and if τn is a uniform permutationon {1, . . . , n}, then for every rational r ∈ [0, 1], ∑n

i=1 x
n
τn(i)1{r≥Ui} → tr in probabil-ity (in fat in L2). The result in probability remains true if xn

i , 1 ≤ i ≤ n is ran-dom with sum t, and max1≤i≤n x
n
i → 0 in probability. One onludes that the pro-ess (

∑n
i=1 x

n
τn(i)1{s≥Ui}, 0 ≤ s ≤ 1) onverges in probability to (ts, 0 ≤ s ≤ 1) forthe uniform norm by a monotoniity argument. The lemma is then proved by letting

x1 = σ(pn)−1pn
τn(In

t +1), x2 = σ(pn)−1pn
τn(It+2), . . . , xmn−In

t
= σ(pn)−1pn

τn(mn), xmn−In
t +1 =

t−
∑mn

i=In
t +1 σ(pn)−1pn

τn(In
t +1) (note that this last term is ≤ σ(pn)−1pn

τn(In
t ), whih goes to

0). So let us show (13). To this end, let 0 < ρ < 1, then Xρ
n :=

∑mn

i=⌊ρmn⌋
σ(pn)−1pn

τn(i) →
∞ in probability, sine E[Xρ

n] ∼ σ(pn)−1(1 − ρ) goes to in�nity (notie σ(p) ≤ p1) while
E[(Xρ

n)2] ∼ E[Xρ
n]2, as a simple omputation shows. Therefore, In

t ∼ mn in probability.Consequently, for any K ∈ N, the quantity P (τ−1
n (1) < In

t , . . . , τ
−1
n (K) < In

t ) goes to 1,so mini≥In
t
τn(i) → ∞ in probability. But then, for any ε > 0, if K is suh that θK < ε/2,then σ(pn)−1pn

K ≤ ε for n large. Up to taking n even larger, with probability lose to 1,
τn(i) ≥ K for i ≥ In

t and therefore maxi≥In
t
σ(pn)−1pn

τn(i) ≤ ε, hene (13). �One dedues, as around the proof of Proposition 1, the following laim. Let X(n)(t) =
Λp

n◦τn(In
t ) be as above with data m = mn, p

n
τn(i), 1 ≤ i ≤ mn, si = Ui. ThenProposition 2 As n→ ∞, under the asymptoti regime (12), the proess (X(n)(t), t ≥ 0)onverges in the sense of weak onvergene of �nite-dimensional marginals to the time-reversed eternal additive oalesent (Cθ(− log(t)), t ≥ 0).6.2 On the marginal distributionsIt would also be interesting to determine the marginal laws of the fragmentation F(α)(t) :=

C(α)(− log t). The task seems quite di�ult if started from the desription of F(α)(t) interms of lengths of onstany intervals of Vervaat transform of bridges, beause exursiontheory seems powerless here, unlike in [13℄. In partiular, the fat that the fragmentationis based on stable loops and not stable bridges impedes the appliation of results ofMiermont [13℄ on additive oalesents based on bridges of ertain Lévy proesses.Another way to start the exploration is to use the representation of fragmentationproesses Fθ(t) := Cθ(− log t) desribed in the preeding setion with the help of Inho-mogeneous Continuum Random Trees (ICRT) disussed in [3℄. In partiular, it is easy toobtain the �rst moment of a size-biased pik2 F†(t) from the sequene F(t) for any �xed
t, as follows.Let us reall the basi fats on the ICRT(θ) onstrution of Fθ. The ICRT an beviewed via a stik-breaking onstrution as the metri ompletion of the positive real line2Reall that a size-biased pik X† from a (random) positive sequene (Xi, i ≥ 1) with sum 0 < S < ∞a.s. is a random variable of the form Xi∗ , where P (i∗ = i|Xj, j ≥ 1) = Xi/S.
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R+ endowed with a non standard metri. Preisely, suppose we are given the followingindependent random elements:

• A Poisson proess {(Ui, Vi), i ≥ 1} on the otant O = {(x, y) : 0 < y < x} ⊂ R2
+,with intensity θ0dxdy1O, so in partiular {Ui, i ≥ 1} is a Poisson proess withintensity θ0xdx1x≥0,

• A sequene of independent Poisson proesses {ξi,j, j ≥ 1}, i = 1, 2, . . . with respe-tive intensities θidx1x≥0, i = 1, 2, . . ..We distinguish the points (Vi, i ≥ 1), (ξi,1, i ≥ 1) as joinpoints, while (Ui, i ≥ 1), (ξi,j, i ≥
1, j ≥ 2) are alled utpoints. If η is a utpoint, let η∗ be its assoiated joinpoint, i.e.
U∗

i = Vi, ξ
∗
i,j = ξi,1. By the assumption on θ, it is a.s. possible to arrange the utpoints byinreasing order 0 < η1 < η2 < . . .. We then onstrut a family R(k), k ≥ 1 of �reduedtrees� as follows. Cut the set (0,∞) into �branhes� (ηi, ηi+1], where by onvention η0 = 0.Let R(1) be the segment (0, η1], endowed with the usual distane d1(x, y) = |x−y|. Thengiven R(k), dk, we obtain R(k + 1) by adding the branh (ηk, ηk+1] somewhere on R(k),and we plant the left-end ηk on the joinpoint η∗k (sine a.s. η∗ < η, the point η∗k isindeed an element of R(k)). Preisely, R(k + 1) = (0, ηk+1] and dk+1(x, y) = dk(x, y) if

x, y ∈ R(k), dk+1(x, y) = |x− y| if x, y ∈ (ηk, ηk+1], and dk+1(x, y) = x− ηk + dk(y, η
∗
k) if

x ∈ (ηk, ηk+1], y ∈ R(k). As the distanes dk are ompatible by de�nition, this de�nes arandom metri spae (0,∞), d suh that the restrition of d toR(k) is dk, we all its metriompletion T θ the ICRT(θ), its elements are alled verties. The point ∅ = limn→∞ 1/nis distinguished and alled the root.One an see that T θ is an R-tree, i.e. a omplete metri spae suh that for any
x, y ∈ T θ there is a unique simple path [[x, y]] from x to y, whih is isometri to thesegment [0, d(x, y)], i.e. is a geodesi. Moreover, it an be endowed with a natural measure
µθ whih is the weak limit as n→ ∞ of the empirial measures n−1

∑n
i=1 δηi

. This measureis non-atomi and supported on leaves, i.e. verties x ∈ T θ suh that x /∈ [[∅, y]] \ {y} forany y ∈ T θ. Non-leaf verties form a set alled the skeleton. A seond natural measure isthe Lebesgue measure λ on T θ, i.e. the unique measure suh that λ([[x, y]]) = d(x, y) forany x, y, and this measure is supported on the skeleton.Now for eah t onsider a Poisson measure on T θ with atoms {xt
i, i ≥ 1}, with intensity

tλ(dx), so the di�erent proesses are oupled in the natural way as t varies, i.e. {xt
i, i ≥ 1}inreases with t. These points disonnet the tree into a forest of disjoint onneted treeomponents, order them as F θ

i (t), i ≥ 1 by dereasing order of µθ-mass. Then the proess
((µθ(F θ

i (t)), i ≥ 1), t ≥ 0) of these µθ-masses has same law as Fθ. A size-biased pikfrom this sequene of masses is then obtained as the µθ-mass of the tree omponent attime t that ontains an independent µθ-sample, onditionally on (T θ, µθ). Therefore, if
Fθ

†(t) denotes suh a size-biased pik, E[Fθ
†(t)] is the probability that two independent µθ-samples X1, X2 belong to the same tree omponent of the ut tree, i.e. that no atom of thePoisson measure at time t falls in the path [[X1, X2]], and hene it equals E[e−td(X1,X2)].It turns out [3℄ that d(X1, X2) has same law as the length η1 of the �rst branh (i.e.the length of R(1)). It is easy to see (see also [7℄) that this branh's length has law

P (η1 > r) = e−θ2

0
r2/2

∞∏

i=1

(1 + θir)e
−θir.



REFERENCES 17In our setting, reall that the random sequene θ∗ is related to that of the atoms (∆i)of a Poisson measure on (0,∞) with intensity α(α−1)
Γ(2−α)

x−1−αdx by (10) and (11). Observethat F(α)(t) = Fθ∗(t/et∗), and sine we must take a Poisson proess with intensity t/et∗on the skeleton of the ICRT(θ∗), terms et∗ anel out and E[F
(α)
† (t)] = E[e−tη] where

P (η ≥ r) = E

[
∞∏

i=1

(1 + r∆i)e
−r∆i

]

= exp

(
−
∫ ∞

0

α(α− 1)dx

Γ(2 − α)x1+α
(1 − exp(−rx+ log(1 + rx)))

)

= exp(−(α− 1)rα),whih is a Weibull distribution. This gives (at least in priniple) the �rst moment
E[F

(α)
† (t)] =

∫ ∞

0
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