4,473 research outputs found
Viscous/potential flow about multi-element two-dimensional and infinite-span swept wings: Theory and experiment
The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary layer and potential flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible
The Stability of Large External Imbalances: The Role of Returns Differentials
Were the U.S. to persistently earn substantially more on its foreign investments ("U.S. claims") than foreigners earn on their U.S. investments ("U.S. liabilities"), the likelihood that the current environment of sizeable global imbalances will evolve in a benign manner increases. However, utilizing data on the actual foreign equity and bond portfolios of U.S. investors and the U.S. equity and bond portfolios of foreign investors, we find that the returns differential of U.S. claims over U.S. liabilities is essentially zero. Ending our sample in 2005, the differential is positive, whereas through 2004 it is negative; in both cases the differential is statistically indecipherable from zero. Moreover, were it not for the poor timing of investors from developed countries, who tend to shift their U.S. portfolios toward (or away from) equities prior to the subsequent underperformance (or strong performance) of equities, the returns differential would be even lower. Thus, in the context of equity and bond portfolios we find no evidence that the U.S. can count on earning more on its claims than it pays on its liabilities.
Impact flux of asteroids and water transport to the habitable zone in binary star systems
By now, observations of exoplanets have found more than 50 binary star
systems hosting 71 planets. We expect these numbers to increase as more than
70% of the main sequence stars in the solar neighborhood are members of binary
or multiple systems. The planetary motion in such systems depends strongly on
both the parameters of the stellar system (stellar separation and eccentricity)
and the architecture of the planetary system (number of planets and their
orbital behaviour). In case a terrestrial planet moves in the so-called
habitable zone (HZ) of its host star, the habitability of this planet depends
on many parameters. A crucial factor is certainly the amount of water. We
investigate in this work the transport of water from beyond the snow-line to
the HZ in a binary star system and compare it to a single star system
Asteroid flux towards circumprimary habitable zones in binary star systems: I. Statistical Overview
So far, multiple stellar systems harbor more than 130 extra solar planets.
Dynamical simulations show that the outcome of planetary formation process can
lead to various planetary architecture (i.e. location, size, mass and water
content) when the star system is single or double. In the late phase of
planetary formation, when embryo-sized objects dominate the inner region of the
system, asteroids are also present and can provide additional material for
objects inside the habitable zone (hereafter HZ). In this study, we make a
comparison of several binary star systems and their efficiency to move icy
asteroids from beyond the snow-line into orbits crossing the HZ. We modeled a
belt of 10000 asteroids (remnants from the late phase of planetary formation
process) beyond the snow-line. The planetesimals are placed randomly around the
primary star and move under the gravitational influence of the two stars and a
gas giant. As the planetesimals do not interact with each other, we divided the
belt into 100 subrings which were separately integrated. In this statistical
study, several double star configurations with a G-type star as primary are
investigated. Our results show that small bodies also participate in bearing a
non-negligible amount of water to the HZ. The proximity of a companion moving
on an eccentric orbit increases the flux of asteroids to the HZ, which could
result into a more efficient water transport on a short timescale, causing a
heavy bombardment. In contrast to asteroids moving under the gravitational
perturbations of one G-type star and a gas giant, we show that the presence of
a companion star can not only favor a faster depletion of our disk of
planetesimals but can also bring 4 -- 5 times more water into the whole HZ.Comment: Accepted for publication in A&
The Instability Transition for the Restricted 3-Body Problem. III. The Lyapunov Exponent Criterion
We establish a criterion for the stability of planetary orbits in stellar
binary systems by using Lyapunov exponents and power spectra for the special
case of the circular restricted 3-body problem (CR3BP). The centerpiece of our
method is the concept of Lyapunov exponents, which are incorporated into the
analysis of orbital stability by integrating the Jacobian of the CR3BP and
orthogonalizing the tangent vectors via a well-established algorithm originally
developed by Wolf et al. The criterion for orbital stability based on the
Lyapunov exponents is independently verified by using power spectra. The
obtained results are compared to results presented in the two previous papers
of this series. It is shown that the maximum Lyapunov exponent can be used as
an indicator for chaotic behaviour of planetary orbits, which is consistent
with previous applications of this method, particularly studies for the Solar
System. The chaotic behaviour corresponds to either orbital stability or
instability, and it depends solely on the mass ratio of the binary components
and the initial distance ratio of the planet relative to the stellar separation
distance. Our theoretical results allow us to link the study of planetary
orbital stability to chaos theory noting that there is a large array of
literature on the properties and significance of Lyapunov exponents. Although
our results are given for the special case of the CR3BP, we expect that it may
be possible to augment the proposed Lyapunov exponent criterion to studies of
planets in generalized stellar binary systems, which is strongly motivated by
existing observational results as well as results expected from ongoing and
future planet search missions.Comment: 10 pages, 8 figures, 3 tables; accepted by Astronomy and Astrophysic
Survival curves and age response functions for chinese hamster cells exposed to X-rays or high LET alpha-particles
Epidemiology and potential preventative measures for viral infections in children with malignancy and those undergoing hematopoietic cell transplantation.
In pediatric patients with malignancy and those receiving hematopoietic stem cell transplants, bacterial and fungal infections have been the focus of fever and neutropenia episodes for decades. However, improved diagnostic capabilities have revealed viral pathogens as a significant cause of morbidity and mortality. Because of limited effective antiviral therapies, prevention of viral infections is paramount. Pre-exposure and post-exposure prophylaxis and antiviral suppressive therapeutic approaches are reviewed. Additionally, infection control practices specific to this patient population are discussed. A comprehensive approach utilizing each of these can be effective at reducing the negative impact of viral infections
- …
