30 research outputs found

    Network-Based Characterization of Blood Large-Scale Coherent Motion in the Healthy Human Aorta With 4D Flow MRI

    Get PDF
    Aorta humana; Resonancia magnéticaHuman aorta; MRIAorta humana; Ressonància magnèticaObjective: The need for distilling the hemodynamic complexity of aortic flows into clinically relevant quantities resulted in a loss of the information hidden in 4D aortic fluid structures. To reduce information loss, this study proposes a network-based approach to identify and characterize in vivo the large-scale coherent motion of blood in the healthy human aorta. Methods: The quantitative paradigm of the aortic flow as a “social network” was applied on 4D flow MRI acquisitions performed on forty-one healthy volunteers. Correlations between the aortic blood flow rate waveform at the proximal ascending aorta (AAo), assumed as one of the drivers of aortic hemodynamics, and the waveforms of the axial velocity in the whole aorta were used to build “one-to-all” networks. The impact of the driving flow rate waveform and of aortic geometric attributes on the transport of large-scale coherent fluid structures was investigated. Results: The anatomical length of persistence of large-scale coherent motion was the 29.6% of the healthy thoracic aorta length (median value, IQR 23.1%–33.9%). Such length is significantly influenced by the average and peak-to-peak AAo blood flow rate values, suggesting a remarkable inertial effect of the AAo flow rate on the transport of large-scale fluid structures in the distal aorta. Aortic geometric attributes such as curvature, torsion and arch shape did not influence the anatomical length of persistence. Conclusion: The proposed in vivo approach allowed to quantitatively characterize the transport of large-scale fluid structures in the healthy aorta, strengthening the definition of coherent hemodynamic structures and identifying flow inertia rather than geometry as one of its main determinants. Significance: The findings on healthy aortas may be used as reference values to investigate the impact of aortic disease or implanted devices in disrupting/restoring the physiological spatiotemporal coherence of large-scale aortic flow.Spanish Ministry of Science, Innovation and Universities. Grant Number: IJC2018-037349-

    Fully Three-Dimensional Hemodynamic Characterization of Altered Blood Flow in Bicuspid Aortic Valve Patients With Respect to Aortic Dilatation: A Finite Element Approach

    Get PDF
    Bicuspid aortic valve; Congenital heart disease; Magnetic resonance imagingVàlvula aòrtica bicúspide; Cardiopatia congènita; Imatges per ressonància magnèticaVálvula aórtica bicúspide; Cardiopatía congénita; Imágenes de resonancia magnéticaBackground and Purpose: Prognostic models based on cardiovascular hemodynamic parameters may bring new information for an early assessment of patients with bicuspid aortic valve (BAV), playing a key role in reducing the long-term risk of cardiovascular events. This work quantifies several three-dimensional hemodynamic parameters in different patients with BAV and ranks their relationships with aortic diameter. Materials and Methods: Using 4D-flow CMR data of 74 patients with BAV (49 right-left and 25 right-non-coronary) and 48 healthy volunteers, aortic 3D maps of seventeen 17 different hemodynamic parameters were quantified along the thoracic aorta. Patients with BAV were divided into two morphotype categories, BAV-Non-AAoD (where we include 18 non-dilated patients and 7 root-dilated patients) and BAV-AAoD (where we include the 49 patients with dilatation of the ascending aorta). Differences between volunteers and patients were evaluated using MANOVA with Pillai's trace statistic, Mann–Whitney U test, ROC curves, and minimum redundancy maximum relevance algorithm. Spearman's correlation was used to correlate the dilation with each hemodynamic parameter. Results: The flow eccentricity, backward velocity, velocity angle, regurgitation fraction, circumferential wall shear stress, axial vorticity, and axial circulation allowed to discriminate between volunteers and patients with BAV, even in the absence of dilation. In patients with BAV, the diameter presented a strong correlation (> |+/−0.7|) with the forward velocity and velocity angle, and a good correlation (> |+/−0.5|) with regurgitation fraction, wall shear stress, wall shear stress axial, and vorticity, also for morphotypes and phenotypes, some of them are correlated with the diameter. The velocity angle proved to be an excellent biomarker in the differentiation between volunteers and patients with BAV, BAV morphotypes, and BAV phenotypes, with an area under the curve bigger than 0.90, and higher predictor important scores. Conclusions: Through the application of a novel 3D quantification method, hemodynamic parameters related to flow direction, such as flow eccentricity, velocity angle, and regurgitation fraction, presented the best relationships with a local diameter and effectively differentiated patients with BAV from healthy volunteers.This work was funded by ANID – Millennium Science Initiative Program – ICN2021_004 and ANID – Millennium Science Initiative Program – NCN17_129, CONICYT-FONDECYT Postdoctorado #3170737, ANID – FONDECYT Postdoctorado #3220266, ANID Ph. D. Scholarship 21170592, ANID FONDECYT de Iniciación en Investigación #11200481, ANID FONDECYT #1181057, ANID Ph. D. Scholarship 21180391, the Spanish Society of Cardiology (SEC/FEC-INV-CLI 20/015) and the Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV). AG has received funding from the Spanish Ministry of Science, Innovation and Universities (IJC2018-037349-I)

    Network-Based Characterization of Blood Large-Scale Coherent Motion in the Healthy Human Aorta With 4D Flow MRI

    Get PDF
    Objective: The need for distilling the hemodynamic complexity of aortic flows into clinically relevant quantities resulted in a loss of the information hidden in 4D aortic fluid structures. To reduce information loss, this study proposes a network-based approach to identify and characterize in vivo the large-scale coherent motion of blood in the healthy human aorta. Methods: The quantitative paradigm of the aortic flow as a "social network" was applied on 4D flow MRI acquisitions performed on forty-one healthy volunteers. Correlations between the aortic blood flow rate waveform at the proximal ascending aorta (AAo), assumed as one of the drivers of aortic hemodynamics, and the waveforms of the axial velocity in the whole aorta were used to build "one-to-all" networks. The impact of the driving flow rate waveform and of aortic geometric attributes on the transport of large-scale coherent fluid structures was investigated. Results: The anatomical length of persistence of large-scale coherent motion was the 29.6% of the healthy thoracic aorta length (median value, IQR 23.1%-33.9%). Such length is significantly influenced by the average and peak-to-peak AAo blood flow rate values, suggesting a remarkable inertial effect of the AAo flow rate on the transport of large-scale fluid structures in the distal aorta. Aortic geometric attributes such as curvature, torsion and arch shape did not influence the anatomical length of persistence. Conclusion: The proposed in vivo approach allowed to quantitatively characterize the transport of large-scale fluid structures in the healthy aorta, strengthening the definition of coherent hemodynamic structures and identifying flow inertia rather than geometry as one of its main determinants. Significance: The findings on healthy aortas may be used as reference values to investigate the impact of aortic disease or implanted devices in disrupting/restoring the physiological spatiotemporal coherence of large-scale aortic flow

    Fluid–structure interaction simulations outperform computational fluid dynamics in the description of thoracic aorta haemodynamics and in the differentiation of progressive dilation in Marfan syndrome patients

    Get PDF
    Abnormal fluid dynamics at the ascending aorta may be at the origin of aortic aneurysms. This study was aimed at comparing the performance of computational fluid dynamics (CFD) and fluid–structure interaction (FSI) simulations against four-dimensional (4D) flow magnetic resonance imaging (MRI) data; and to assess the capacity of advanced fluid dynamics markers to stratify aneurysm progression risk. Eight Marfan syndrome (MFS) patients, four with stable and four with dilating aneurysms of the proximal aorta, and four healthy controls were studied. FSI and CFD simulations were performed with MRI-derived geometry, inlet velocity field and Young's modulus. Flow displacement, jet angle and maximum velocity evaluated from FSI and CFD simulations were compared to 4D flow MRI data. A dimensionless parameter, the shear stress ratio (SSR), was evaluated from FSI and CFD simulations and assessed as potential correlate of aneurysm progression. FSI simulations successfully matched MRI data regarding descending to ascending aorta flow rates (R2 = 0.92) and pulse wave velocity (R2 = 0.99). Compared to CFD, FSI simulations showed significantly lower percentage errors in ascending and descending aorta in flow displacement (−46% ascending, −41% descending), jet angle (−28% ascending, −50% descending) and maximum velocity (−37% ascending, −34% descending) with respect to 4D flow MRI. FSI- but not CFD-derived SSR differentiated between stable and dilating MFS patients. Fluid dynamic simulations of the thoracic aorta require fluid–solid interaction to properly reproduce complex haemodynamics. FSI- but not CFD-derived SSR could help stratifying MFS patients.This study was funded by Ministerio de Economía y Competitividad (grant no. RTC-2016-5152-1), Fundació la Marató de TV3 (grant no. 20151330), FP7 People: Marie-Curie Actions (grant no. 267128), Instituto de Salud Carlos III (grant nos PI14/0106 and PI17/00381) and ‘la Caixa’ Foundation. M.V. was funded by CompBioMed2, grant agreement ID: 823712, funded under: H2020-EU.1.4.1.3; and SILICOFCM, grant agreement ID: 777204, funded under: H2020-EU.3.1.5.Peer ReviewedPostprint (published version

    Oral Presentation No. 121. Aortic stiffness descriptors by cardiac magnetic resonance are correlated with mechanical testing of ex-vivo aortic aneurysms specimens

    Get PDF
    Background Aortic stiffness independently predicts mayor adverse cardiovascular events and mortality in the general population. Cardiovascular magnetic resonance (CMR) permits the assessment of a number of parameters theoretically linked to aortic stiffness, such as distensibility (AD), pulse wave velocity (PWV) and proximal aorta longitudinal strain. However, no previous study validates these parameters as descriptors of aortic wall stiffness against ex-vivo mechanical testing. Materials and methods Ascending aorta (AAo) specimens were collected from 20 patients undergoing AAo replacement for aneurysms. Patients underwent a CMR protocol in the days leading to the surgery, including 4D flow CMR. Two 15×5 mm specimens (one oriented in the circumferential and the other in the longitudinal aortic direction) were extracted during surgery, and later tested controlling for extension force. Elongation was measured by laser video extensometer and the tangent of the stress-strain curve at diastolic pressure was extracted. AAo PWV and the Eh product (E being Young modulus and h wall thickness) were measured from 4D flow CMR while AD and AAo longitudinal were quantified from cine images. Results and conclusions Marked correlations were found between circumferential elastic modulus and AAo AD (R = −0.502), PWV(R = 0.652) and Eh (R = 0.602). Similarly, strong correlation was identified between AAo longitudinal strain and longitudinal elastic modulus(R = −0.513). In conclusion, PWV and the Eh product are positively related to aortic wall stiffness while aortic distensibility and strain show negative relationships. Thus, these biomarkers are a reliable expression of aortic wall stiffness

    Caracterización mecánica in vivo de aortas ascendentes a partir de imágenes por resonancia magnética

    Get PDF
    Ascending aortic aneurysm is a normally asymptomatic but fatal pathology that requires early follow-up to avoid major complications. In this work, we present a methodology to obtain unpressurized ascending aortic geometry and its nonlinear anisotropic properties from medical imaging.El aneurisma aórtico ascendente es una patología normalmente asintomática pero mortal, por lo que requiere seguimiento temprano para evitar graves complicaciones. En este trabajo, presentamos una metodología para obtener la geometría aórtica ascendente despresurizada y sus propiedades anisótropas no lineales a partir de imagen médica

    Diagnostic value of quantitative parameters for myocardial perfusion assessment in patients with suspected coronary artery disease by single- and dual-energy computed tomography myocardial perfusion imaging

    Get PDF
    To compare performance of visual and quantitative analyses for detecting myocardial ischaemia from single- and dual-energy computed tomography (CT) in patients with suspected coronary artery disease (CAD). Eighty-four patients with suspected CAD were scheduled for dual-energy cardiac CT at rest (CTA) and pharmacological stress (CTP). Myocardial CT perfusion was analysed visually and using three parameters: mean attenuation density (MA), transmural perfusion ratio (TPR) and myocardial perfusion reserve index (MPRI), on both single-energy CT and CT-based iodine images. Significant CAD was defined in AHA-segments by concomitant myocardial hypoperfusion identified visually or quantitatively (parameter < threshold) and coronary stenosis detected by CTA. Single-photon emission CT and invasive coronary angiography were used as reference. Perfusion-parameter cut-off values were calculated in a randomly-selected subgroup of 30 patients. The best-performing thresholds for TPR, MPRI and MA were 0.96, 23 and 0.5 for single-energy CT and 0.97, 47 and 0.3 for iodine imaging. For both CT-imaging modalities, TPR yielded the highest area under receiver operating characteristic curve (AUC) (0.99 and 0.97 for single-energy CT and iodine imaging, respectively, in vessel-based analysis) compared to visual analysis, MA and MPRI. Visual interpretation on iodine imaging resulted in higher AUC compared to that on single-energy CT in per-vessel (AUC: 0.93 vs 0.86, respectively) and per-patient (0.94 vs 0.93) analyses. Transmural perfusion ratio on both CT-imaging modalities is the best-performing parameter for detecting myocardial ischaemia compared to visual method and other perfusion parameters. Visual analysis on CT-based iodine imaging outperforms that on single-energy CT

    Decreased rotational flow and circumferential wall shear stress as early markers of descending aorta dilation in Marfan syndrome: a 4D flow CMR study

    Get PDF
    Marfan syndrome; 4D flow CMR; Helical flowSíndrome de Marfan; Flujo en 4D CMR; Flujo helicoidalSíndrome de Marfan; Flux en 4D CMR; Flux helicoïdalBackground: Diseases of the descending aorta have emerged as a clinical issue in Marfan syndrome following improvements in proximal aorta surgical treatment and the consequent increase in life expectancy. Although a role for hemodynamic alterations in the etiology of descending aorta disease in Marfan patients has been suggested, whether flow characteristics may be useful as early markers remains to be determined. Methods: Seventy-five Marfan patients and 48 healthy subjects were prospectively enrolled. In- and through-plane vortexes were computed by 4D flow cardiovascular magnetic resonance (CMR) in the thoracic aorta through the quantification of in-plane rotational flow and systolic flow reversal ratio, respectively. Regional pulse wave velocity and axial and circumferential wall shear stress maps were also computed. Results: In-plane rotational flow and circumferential wall shear stress were reduced in Marfan patients in the distal ascending aorta and in proximal descending aorta, even in the 20 patients free of aortic dilation. Multivariate analysis showed reduced in-plane rotational flow to be independently related to descending aorta pulse wave velocity. Conversely, systolic flow reversal ratio and axial wall shear stress were altered in unselected Marfan patients but not in the subgroup without dilation. In multivariate regression analysis proximal descending aorta axial (p = 0.014) and circumferential (p = 0.034) wall shear stress were independently related to local diameter. Conclusions: Reduced rotational flow is present in the aorta of Marfan patients even in the absence of dilation, is related to aortic stiffness and drives abnormal circumferential wall shear stress. Axial and circumferential wall shear stress are independently related to proximal descending aorta dilation beyond clinical factors. In-plane rotational flow and circumferential wall shear stress may be considered as an early marker of descending aorta dilation in Marfan patients.This study has been funded by Instituto de Salud Carlos III through the project PI14/0106 (co-founded by European Regional Development Fund), La Marato de TV3 (project number 20151330), by Ministerio de Economia y Competitividad through Retos-Colaboracion 2016 (RTC-2016-5152-1). Guala A. has received funding from the European Union Seventh Framework Programme FP7/People under grant agreement no 267128

    Decreased rotational flow and circumferential wall shear stress as early markers of descending aorta dilation in Marfan syndrome : a 4D flow CMR study

    Get PDF
    Diseases of the descending aorta have emerged as a clinical issue in Marfan syndrome following improvements in proximal aorta surgical treatment and the consequent increase in life expectancy. Although a role for hemodynamic alterations in the etiology of descending aorta disease in Marfan patients has been suggested, whether flow characteristics may be useful as early markers remains to be determined. Seventy-five Marfan patients and 48 healthy subjects were prospectively enrolled. In- and through-plane vortexes were computed by 4D flow cardiovascular magnetic resonance (CMR) in the thoracic aorta through the quantification of in-plane rotational flow and systolic flow reversal ratio, respectively. Regional pulse wave velocity and axial and circumferential wall shear stress maps were also computed. In-plane rotational flow and circumferential wall shear stress were reduced in Marfan patients in the distal ascending aorta and in proximal descending aorta, even in the 20 patients free of aortic dilation. Multivariate analysis showed reduced in-plane rotational flow to be independently related to descending aorta pulse wave velocity. Conversely, systolic flow reversal ratio and axial wall shear stress were altered in unselected Marfan patients but not in the subgroup without dilation. In multivariate regression analysis proximal descending aorta axial (p = 0.014) and circumferential (p = 0.034) wall shear stress were independently related to local diameter. Reduced rotational flow is present in the aorta of Marfan patients even in the absence of dilation, is related to aortic stiffness and drives abnormal circumferential wall shear stress. Axial and circumferential wall shear stress are independently related to proximal descending aorta dilation beyond clinical factors. In-plane rotational flow and circumferential wall shear stress may be considered as an early marker of descending aorta dilation in Marfan patients. The online version of this article (10.1186/s12968-019-0572-1) contains supplementary material, which is available to authorized users

    Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease

    Get PDF
    Altres ajuts: This study has been funded by , La Marató de TV3 (project number 20151330). Guala A. has received funding from the European Union Seventh Framework Programme FP7/People under grant agreement n° 267128.In patients with bicuspid valve (BAV), ascending aorta (AAo) dilatation may be caused by altered flow patterns and wall shear stress (WSS). These differences may explain different aortic dilatation morphotypes. Using 4D-flow cardiovascular magnetic resonance (CMR), we aimed to analyze differences in flow patterns and regional axial and circumferential WSS maps between BAV phenotypes and their correlation with ascending aorta dilatation morphotype. One hundred and one BAV patients (aortic diameter ≤ 45 mm, no severe valvular disease) and 20 healthy subjects were studied by 4D-flow CMR. Peak velocity, flow jet angle, flow displacement, in-plane rotational flow (IRF) and systolic flow reversal ratio (SFRR) were assessed at different levels of the AAo. Peak-systolic axial and circumferential regional WSS maps were also estimated. Unadjusted and multivariable adjusted linear regression analyses were used to identify independent correlates of aortic root or ascending dilatation. Age, sex, valve morphotype, body surface area, flow derived variables and WSS components were included in the multivariable models. The AAo was non-dilated in 24 BAV patients and dilated in 77 (root morphotype in 11 and ascending in 66). BAV phenotype was right-left (RL-) in 78 patients and right-non-coronary (RN-) in 23. Both BAV phenotypes presented different outflow jet direction and velocity profiles that matched the location of maximum systolic axial WSS. RL-BAV velocity profiles and maximum axial WSS were homogeneously distributed right-anteriorly, however, RN-BAV showed higher variable profiles with a main proximal-posterior distribution shifting anteriorly at mid-distal AAo. Compared to controls, BAV patients presented similar WSS magnitude at proximal, mid and distal AAo (p = 0.764, 0.516 and 0.053, respectively) but lower axial and higher circumferential WSS components (p < 0.001 for both, at all aortic levels). Among BAV patients, RN-BAV presented higher IRF at all levels (p = 0.024 proximal, 0.046 mid and 0.002 distal AAo) and higher circumferential WSS at mid and distal AAo (p = 0.038 and 0.046, respectively) than RL-BAV. However, axial WSS was higher in RL-BAV compared to RN-BAV at proximal and mid AAo (p = 0.046, 0.019, respectively). Displacement and axial WSS were independently associated with the root-morphotype, and circumferential WSS and SFRR with the ascending-morphotype. Different BAV-phenotypes present different flow patterns with an anterior distribution in RL-BAV, whereas, RN-BAV patients present a predominant posterior outflow jet at the sinotubular junction that shifts to anterior or right anterior in mid and distal AAo. Thus, RL-BAV patients present a higher axial WSS at the aortic root while RN-BAV present a higher circumferential WSS in mid and distal AAo. These results may explain different AAo dilatation morphotypes in the BAV population. The online version of this article (10.1186/s12968-018-0451-1) contains supplementary material, which is available to authorized users
    corecore