763 research outputs found

    Shell model calculation of the beta- and beta+ partial halflifes of 54Mn and other unique second forbidden beta decays

    Full text link
    The nucleus 54Mn has been observed in cosmic rays. In astrophysical environments it is fully stripped of its atomic electrons and its decay is dominated by the beta- branch to the 54Fe ground state. Application of 54Mn based chronometer to study the confinement of the iron group cosmic rays requires knowledge of the corresponding halflife, but its measurement is impossible at the present time. However, the branching ratio for the related beta+ decay of 54Mn was determined recently. We use the shell model with only a minimal truncation and calculate both beta+ and beta- decay rates of 54Mn. Good agreement for the beta+ branch suggests that the calculated partial halflife of the beta- decay, (4.94 \pm 0.06) x 10^5 years, should be reliable. However, this halflife is noticeably shorter than the range 1-2 x 10^6 y indicated by the fit based on the 54Mn abundance in cosmic rays. We also evaluate other known unique second forbidden beta decays from the nuclear p and sd shells (10Be, 22Na, and two decay branches of 26Al) and show that the shell model can describe them with reasonable accuracy as well.Comment: 4 pages, RevTeX, 2 figure

    Propagation of cosmic-ray nucleons in the Galaxy

    Full text link
    We describe a method for the numerical computation of the propagation of primary and secondary nucleons, primary electrons, and secondary positrons and electrons. Fragmentation and energy losses are computed using realistic distributions for the interstellar gas and radiation fields, and diffusive reacceleration is also incorporated. The models are adjusted to agree with the observed cosmic-ray B/C and 10Be/9Be ratios. Models with diffusion and convection do not account well for the observed energy dependence of B/C, while models with reacceleration reproduce this easily. The height of the halo propagation region is determined, using recent 10Be/9Be measurements, as >4 kpc for diffusion/convection models and 4-12 kpc for reacceleration models. For convection models we set an upper limit on the velocity gradient of dV/dz < 7 km/s/kpc. The radial distribution of cosmic-ray sources required is broader than current estimates of the SNR distribution for all halo sizes. Full details of the numerical method used to solve the cosmic-ray propagation equation are given.Comment: 15 pages including 23 ps-figures and 3 tables, latex2e, uses emulateapj.sty (ver. of 11 May 1998, enclosed), apjfonts.sty, timesfonts.sty. To be published in ApJ 1998, v.509 (December 10 issue). More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.html Some references are correcte

    Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter

    Full text link
    In recent years, a number of experiments have been conducted with the goal of studying cosmic rays at GeV to TeV energies. This is a particularly interesting regime from the perspective of indirect dark matter detection. To draw reliable conclusions regarding dark matter from cosmic ray measurements, however, it is important to first understand the propagation of cosmic rays through the magnetic and radiation fields of the Milky Way. In this paper, we constrain the characteristics of the cosmic ray propagation model through comparison with observational inputs, including recent data from the CREAM experiment, and use these constraints to estimate the corresponding uncertainties in the spectrum of cosmic ray electrons and positrons from dark matter particles annihilating in the halo of the Milky Way.Comment: 21 pages, 9 figure

    Status of ANITA and ANITA-lite

    Full text link
    We describe a new experiment to search for neutrinos with energies above 3 x 10^18 eV based on the observation of short duration radio pulses that are emitted from neutrino-initiated cascades. The primary objective of the ANtarctic Impulse Transient Antenna (ANITA) mission is to measure the flux of Greisen-Zatsepin-Kuzmin (GZK) neutrinos and search for neutrinos from Active Galactic Nuclei (AGN). We present first results obtained from the successful launch of a 2-antenna prototype instrument (called ANITA-lite) that circled Antarctica for 18 days during the 03/04 Antarctic campaign and show preliminary results from attenuation length studies of electromagnetic waves at radio frequencies in Antarctic ice. The ANITA detector is funded by NASA, and the first flight is scheduled for December 2006.Comment: 9 pages, 8 figures, to be published in Proceedings of International School of Cosmic Ray Astrophysics, 14th Course: "Neutrinos and Explosive Events in the Universe", Erice, Italy, 2-13 July 200

    Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment

    Get PDF
    The Antarctic Impulsive Transient Antenna (ANITA) completed its second long-duration balloon flight in January 2009, with 31 days aloft (28.5 live days) over Antarctica. ANITA searches for impulsive coherent radio Cherenkov emission from 200 to 1200 MHz, arising from the Askaryan charge excess in ultra-high energy neutrino-induced cascades within Antarctic ice. This flight included significant improvements over the first flight in the payload sensitivity, efficiency, and a flight trajectory over deeper ice. Analysis of in-flight calibration pulses from surface and sub-surface locations verifies the expected sensitivity. In a blind analysis, we find 2 surviving events on a background, mostly anthropogenic, of 0.97+-0.42 events. We set the strongest limit to date for 1-1000 EeV cosmic neutrinos, excluding several current cosmogenic neutrino models.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Elemental energy spectra of cosmic rays measured by CREAM-II

    Full text link
    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment CREAM (Cosmic Ray Energetics And Mass). The instrument (CREAM-II) was comprised of detectors based on different techniques (Cherenkov light, specific ionization in scintillators and silicon sensors) to provide a redundant charge identification and a thin ionization calorimeter capable of measuring the energy of cosmic rays up to several hundreds of TeV. The data analysis is described and the individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14 eV. The spectral shape looks nearly the same for all the primary elements and can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen absolute intensity in the energy range 100-800 GeV/n is also measured.Comment: 4 pages, 3 figures, presented at ICRC 2009, Lodz, Polan

    Ultra-Relativistic Magnetic Monopole Search with the ANITA-II Balloon-borne Radio Interferometer

    Full text link
    We have conducted a search for extended energy deposition trails left by ultra-relativistic magnetic monopoles interacting in Antarctic ice. The non-observation of any satisfactory candidates in the 31 days of accumulated ANITA-II flight data results in an upper limit on the diffuse flux of relativistic monopoles. We obtain a 90% C.L. limit of order 10^{-19}/(cm^2-s-sr) for values of Lorentz boost factor 10^{10}<gamma at the anticipated energy E=10^{16} GeV. This bound is stronger than all previously published experimental limits for this kinematic range.Comment: updated to version accepted by Phys. Rev.

    Measurements of cosmic-ray energy spectra with the 2nd CREAM flight

    Full text link
    During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And Mass) balloon experiment collected data for 28 days, measuring the charge and the energy of cosmic rays (CR) with a redundant system of particle identification and an imaging thin ionization calorimeter. Preliminary direct measurements of the absolute intensities of individual CR nuclei are reported in the elemental range from carbon to iron at very high energy.Comment: 4 pages, 3 figures, presented at XV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2008

    Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array

    Get PDF
    We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray bursts (GRBs) in the data set collected by the Testbed station of the Askaryan Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no events that survive our cuts, which is consistent with 0.12 expected background events. Using NeuCosmA as a numerical GRB reference emission model, we estimate upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from 10710^{7} to 101010^{10} GeV. This is the first limit on the prompt UHE GRB neutrino quasi-diffuse flux above 10710^{7} GeV.Comment: 14 pages, 8 figures, Published in Astroparticle Physics Journa
    • …
    corecore