6 research outputs found

    Seasonal effects in the application of the MOMA remote calibration tool to outdoor PM2.5 air sensors

    Get PDF
    Air sensors are being used more frequently to measure hyper-local air quality. The PurpleAir sensor is among one of the most popular air sensors used worldwide to measure fine particulate matter (PM2.5). However, there is a need to understand PurpleAir data quality especially under different environmental conditions with varying particulate matter (PM) sources and size distributions. Several correction factors have been developed to make the PurpleAir sensor data more comparable to reference monitor data. The goal of this work was to determine the performance of a remote calibration tool called MOment MAtching (MOMA) for temporally varying PM2.5 sources. MOMA performs calibrations using reference site data within 0–15 km from the sensor. Data from 20 PurpleAir sensors deployed across a network in Phoenix, Arizona from July 2019 to April 2021 were used. The results showed that the MOMA calibration tool improved the accuracy of PurpleAir sensor data across Phoenix and was comparable to the EPA correction factor with a root mean square error (RMSE) of 4.19 – 7.92 µg m-3 vs. 4.23 – 9.27 µg m-3. However, MOMA provided a better estimate of daily exceedances compared to the reference data for smoke conditions. Using speciated PM data, MOMA was able to distinguish between different PM sources such as winter wood burning, and wildfires and dust events in the summer

    Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide

    No full text
    This study reports on the performance of electrochemical-based low-cost sensors and their use in a community application. CairClip sensors were collocated with federal reference and equivalent methods and operated in a network of sites by citizen scientists (community members) in Houston, Texas and Denver, Colorado, under the umbrella of the NASA-led DISCOVER-AQ Earth Venture Mission. Measurements were focused on ozone (O3) and nitrogen dioxide (NO2). The performance evaluation showed that the CairClip O3/NO2 sensor provided a consistent measurement response to that of reference monitors (r2 = 0.79 in Houston; r2 = 0.72 in Denver) whereas the CairClip NO2 sensor measurements showed no agreement to reference measurements. The CairClip O3/NO2 sensor data from the citizen science sites compared favorably to measurements at nearby reference monitoring sites. This study provides important information on data quality from low-cost sensor technologies and is one of few studies that reports sensor data collected directly by citizen scientists

    Quantifying the impact of residential heating on the urban air quality in a typical European coal combustion region

    No full text
    The present investigation, carried out as a case study in a typical major city situated in a European coal combustion region (Krakow, Poland), aims at quantifying the impact on the urban air quality of residential heating by coal combustion in comparison with other potential pollution sources such as power plants, industry, and traffic. Emissions were measured for 20 major sources, including small stoves and boilers, and the particulate matter (PM) was analyzed for 52 individual compounds together with outdoor and indoor PM10 collected during typical winter pollution episodes. The data were analyzed using chemical mass balance modeling (CMB) and constrained positive matrix factorization (CMF) yielding source apportionments for PM10, B(a)P, and other regulated air pollutants namely Cd, Ni, As, and Pb. The results are potentially very useful for planning abatement strategies in all areas of the world, where coal combustion in small appliances is significant. During the studied pollution episodes in Krakow, European air quality limits were exceeded with up to a factor 8 for PM10 and up to a factor 200 for B(a)P. The levels of these air pollutants were accompanied by high concentrations of azaarenes, known markers for inefficient coal combustion. The major culprit for the extreme pollution levels was demonstrated to be residential heating by coal combustion in small stoves and boilers (>50% for PM10 and >90% B(a)P), whereas road transport (<10% for PM10 and <3% for B(a)P), and industry (4−15% for PM10 and <6% for B(a)P) played a lesser role. The indoor PM10 and B(a)P concentrations were at high levels similar to those of outdoor concentrations and were found to have the same sources as outdoors. The inorganic secondary aerosol component of PM10 amounted to around 30%, which for a large part may be attributed to the industrial emission of the precursors SO2 and NOx
    corecore