255 research outputs found

    Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents

    Get PDF
    The effect of the introduction of specific adsorbents on the gas separation properties of polymeric membranes has been studied. For this purpose both carbon molecular sieves and zeolites are considered. The results show that zeolites such as silicate-1, 13X and KY improve to a large extent the separation properties of poorly selective rubbery polymers towards a mixture of carbon dioxide/methane. Some of the filled rubbery polymers achieve intrinsic separation properties comparable to cellulose acetate, polysulfone or polyethersulfone. However, zeolite 5A leads to a decrease in permeability and an unchanged selectivity. This is due to the impermeable character of these particles, i.e. carbon dioxide molecules cannot diffuse through the porous structure under the conditions applied. Using silicate-1 also results in an improvement of the oxygen/nitrogen separation properties which is mainly due to a kinetic effect. Carbon molecular sieves do not improve the separation performances or only to a very small extent. This is caused by a mainly dead-end (not interconnected) porous structure which is inherent to their manufacturing process

    Preparation of zeolite filled glassy polymer membranes

    Get PDF
    The incorporation of zeolite particles in the micrometer range into polymeric matrices was investigated as a way to improve the gas separation properties of the polymer materials used in the form of membranes. The adhesion between the polymer phase and the external surface of the particles appeared to be a major problem in the preparation of such membranes when the polymer is in the glassy state at room temperature. Various methods were investigated to improve the internal membrane structure, that is, surface modification of the zeolite external surface, preparation above the glass-transition temperature, and heat treatment. Improved structures were obtained as observed by scanning electron microscopy, but the influence on the gas separation properties was not in agreement with the observed structural improvements

    Generalized Classical BRST Cohomology and Reduction of Poisson Manifolds

    Full text link
    In this paper, we formulate a generalization of the classical BRST construction which applies to the case of the reduction of a poisson manifold by a submanifold. In the case of symplectic reduction, our procedure generalizes the usual classical BRST construction which only applies to symplectic reduction of a symplectic manifold by a coisotropic submanifold, \ie\ the case of reducible ``first class'' constraints. In particular, our procedure yields a method to deal with ``second-class'' constraints. We construct the BRST complex and compute its cohomology. BRST cohomology vanishes for negative dimension and is isomorphic as a poisson algebra to the algebra of smooth functions on the reduced poisson manifold in zero dimension. We then show that in the general case of reduction of poisson manifolds, BRST cohomology cannot be identified with the cohomology of vertical differential forms.Comment: 3

    Synthesis of 2-hydroxy-3-methylbut-3-enyl substituted coumarins and xanthones as natural products. Application of the Schenck ene reaction of singlet oxygen with ortho-prenylphenol precursors

    Get PDF
    Application of our original photooxidation–reduction methodology to prenylated dihydroxycoumarin and trihydroxyxanthone compounds led to the corresponding ortho-(2-hydroxy-3-methylbut-3-enyl)phenol derivatives with yields ranging from 8 to 65%. In most of the reported experiments, the oxidation products distribution, after the photooxygenation step, was controlled by the competition between the large group effect and the stabilising phenolic assistance effect. We also showed that ortho-(3-hydroxy-3-methylbut-1-enyl)phenol derivatives could be considered as biogenetic precursors of 2,2-dimethylbenzopyranic structures

    Super-extended noncommutative Landau problem and conformal symmetry

    Full text link
    A supersymmetric spin-1/2 particle in the noncommutative plane, subject to an arbitrary magnetic field, is considered, with particular attention paid to the homogeneous case. The system has three different phases, depending on the magnetic field. Due to supersymmetry, the boundary critical phase which separates the sub- and super-critical cases can be viewed as a reduction to the zero-energy eigensubspace. In the sub-critical phase the system is described by the superextension of exotic Newton-Hooke symmetry, combined with the conformal so(2,1) ~ su(1,1) symmetry; the latter is changed into so(3) ~ su(2) in the super-critical phase. In the critical phase the spin degrees of freedom are frozen and supersymmetry disappears.Comment: 12 pages, references added, published versio

    NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference.

    Get PDF
    MOTIVATION: Reconstruction of gene regulatory networks (GRNs) is of utmost interest to biologists and is vital for understanding the complex regulatory mechanisms within the cell. Despite various methods developed for reconstruction of GRNs from gene expression profiles, they are notorious for high false positive rate owing to the noise inherited in the data, especially for the dataset with a large number of genes but a small number of samples. RESULTS: In this work, we present a novel method, namely NARROMI, to improve the accuracy of GRN inference by combining ordinary differential equation-based recursive optimization (RO) and information theory-based mutual information (MI). In the proposed algorithm, the noisy regulations with low pairwise correlations are first removed by using MI, and the redundant regulations from indirect regulators are further excluded by RO to improve the accuracy of inferred GRNs. In particular, the RO step can help to determine regulatory directions without prior knowledge of regulators. The results on benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge and experimentally determined GRN of Escherichia coli show that NARROMI significantly outperforms other popular methods in terms of false positive rates and accuracy. AVAILABILITY: All the source data and code are available at: http://csb.shu.edu.cn/narromi.htm

    First 2-Hydroxy-3-Methylbut-3-Enyl Substituted Xanthones Isolated From Plants: Structure Elucidation, Synthesis and Antifungal Activity

    Get PDF
    Two new 2-hydroxy-3-methylbut-3-enyl substituted xanthones, ( - )-caledol 1 and ( - )-dicaledol 2 were isolated from a dichloromethane extract of the leaves of Calophyllum caledonicum (Clusiaceae). Compounds 1 and 2 are the first 2-hydroxy-3-methylbut-3-enyl substituted xanthones isolated from natural source. Their structures were elucidated by means of combined analytical methods including HRFABMS, 1D and 2D NMR spectroscopies and also confirmed by total synthesis using biomimetic ortho -prenylphenols photooxygenation ( 1 O 2 ) as a key step. The antifungal activity against Aspergillus fumigatus is reported
    • …
    corecore