4,515 research outputs found
The use of satellite data in understanding and predicting convective and large-scale dynamical processes
Mesoscale convective processes and how they affect and interact with mid-latitude cyclones were studied. The ageostrophic and associated vertical motion field was calculated using a highly accurate iterative method of solving the semigeostrophic omega equation. The tendencies for convective destabilization in the 850-750 mb layer due to differential geostrophic and ageostrophic advection and differential moist adiabatic ascent, were found. The spectral models of the index oscillation, one barotropic and the other baroclinic, were developed. Theoretical and observational studies of cloud streets were conducted
Space shuttle external tank performance improvements: The challenge
The external tank (ET) has been actively involved in performance improvements since the inception of the space shuttle program, primarily by weight savings. Weight savings were realized on the first block of flight articles (standard weight tank). With a need for further performance improvements, the ET Program Office was requested to develop a program to reduce tank weight an additional 6000 lb and schedule delivery of the first lightweight ET (LWT) for June 1982. The weight savings program was accomplished by: (1) a unique approach to use of factors of safety; (2) design optimization; and (3) redesign of structures with large margins of safety which resulted in an actual weight savings of 7294 lb. Additional studies have identified further weight savings which are to be implemented at appropriate times in production flow. Examples are an improved thermal protection system for the LH2 tank aft dome and reduction of slosh baffles in the LO2 tank based on flight data. All performance improvements were compared and selected based on non-recurring and recurring cost and technical risk
Theoretical X-Ray Absorption Debye-Waller Factors
An approach is presented for theoretical calculations of the Debye-Waller
factors in x-ray absorption spectra. These factors are represented in terms of
the cumulant expansion up to third order. They account respectively for the net
thermal expansion , the mean-square relative displacements
, and the asymmetry of the pair distribution function
. Similarly, we obtain Debye-Waller factors for x-ray and
neutron scattering in terms of the mean-square vibrational amplitudes .
Our method is based on density functional theory calculations of the dynamical
matrix, together with an efficient Lanczos algorithm for projected phonon
spectra within the quasi-harmonic approximation. Due to anharmonicity in the
interatomic forces, the results are highly sensitive to variations in the
equilibrium lattice constants, and hence to the choice of exchange-correlation
potential. In order to treat this sensitivity, we introduce two prescriptions:
one based on the local density approximation, and a second based on a modified
generalized gradient approximation. Illustrative results for the leading
cumulants are presented for several materials and compared with experiment and
with correlated Einstein and Debye models. We also obtain Born-von Karman
parameters and corrections due to perpendicular vibrations.Comment: 11 pages, 8 figure
The utilization of satellite data and dynamics in understanding and predicting global weather phenomena
A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, the stability, and the long term evaluation of incipient unstable waves. The flow is forced by latitudinally dependent radiational heating. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance. The properties of the steady Hadley and Rossby required for a thermally forced rotating fluid on a sphere are further explained. An objective parameterization technique is developed for general nonlinear hydrodynamical systems. The typical structure is one in which the rates of change of the dependent variables depend on homogeneous quadratic and linear forms, as well as on inhomogeneous forcing terms. Also documented is a steady, axisymmetric model of the general circulation developed as a basis for climate stability studies. The model includes the effects of heating, rotation, and internal friction, but neglects topography. Included is further research on cloud street phenomena. Orientation angles and horizontal wavelengths of boundary layer rolls and cloud streets are determined from an analysis of a truncated spectral model of three dimensional shallow moist Boussinesq convection in a shearing environment is further explained. Relatively broadly spaced roll clouds have orientations for which the Fourier component of the roll perpendicular shear is nearly zero, but the second corresponds to narrowly spaced rolls having orientations for which the Fourier coefficients of both the perpendicular and the parallel components of the shear are nearly equal
Evaluating the Chinese Revised Controlling Behaviors Scale (C-CBS-R)
The present study evaluated the utility of the Chinese version of the Revised Controlling Behaviors Scale (C-CBS-R) as a measure of controlling behaviors in violent Chinese intimate relationships. Using a mixed-methods approach, in-depth, individual interviews were conducted with 200 Chinese women survivors to elicit qualitative data about their personal experiences of control in intimate relationships. The use of controlling behaviors was also assessed using the C-CBS-R. Interview accounts suggested that the experiences of 91 of the women were consistent with the description of coercive control according to Dutton and Goodman’s (2005) conceptualization of coercion. Using the split-half validation procedure, a receiver operating characteristics (ROC) curve analysis was conducted with the first half of the sample. The area under the curve (AUC) for using the C-CBS-R to identify high control was .99, and the cutoff score of 1.145 maximized both sensitivity and specificity. Applying the cutoff score to the second half gave a sensitivity of 96% and a specificity of 95%. Overall, the C-CBS-R has demonstrated utility as a measure of controlling behaviors with a cutoff score for distinguishing high from low levels of control in violent Chinese intimate relationships
Improving measurements of SF6 for the study of atmospheric transport and emissions
Sulfur hexafluoride (SF6) is a potent greenhouse gas and useful atmospheric tracer. Measurements of SF6 on global and regional scales are necessary to estimate emissions and to verify or examine the performance of atmospheric transport models. Typical precision for common gas chromatographic methods with electron capture detection (GC-ECD) is 1–2%. We have modified a common GC-ECD method to achieve measurement precision of 0.5% or better. Global mean SF6 measurements were used to examine changes in the growth rate of SF6 and corresponding SF6 emissions. Global emissions and mixing ratios from 2000–2008 are consistent with recently published work. More recent observations show a 10% decline in SF6 emissions in 2008–2009, which seems to coincide with a decrease in world economic output. This decline was short-lived, as the global SF6 growth rate has recently increased to near its 2007–2008 maximum value of 0.30±0.03 pmol mol−1 (ppt) yr−1 (95% C.L.)
How to bend galaxy disc profiles - II. Stars surfing the bar in Type-III discs
The radial profiles of stars in disc galaxies are observed to be either purely exponential (Type-I), truncated (Type-II) or antitruncated (Type-III) exponentials. Controlled formation simulations of isolated galaxies can reproduce all of these profile types by varying a single parameter, the initial halo spin. In this paper, we examine these simulations in more detail in an effort to identify the physical mechanism that leads to the formation of Type-III profiles. The stars in the antitruncated outskirts of such discs are now on eccentric orbits, but were born on near-circular orbits at much smaller radii. We show that, and explain how, they were driven to the outskirts via non-linear interactions with a strong and long-lived central bar, which greatly boosted their semimajor axis but also their eccentricity. While bars have been known to cause radial heating and outward migration to stellar orbits, we link this effect to the formation of Type-III profiles. This predicts that the antitruncated parts of galaxies have unusual kinematics for disc-like stellar configurations: high radial velocity dispersions and slow net rotation. Whether such discs exist in nature, can be tested by future observations
Superconductivity at 2.3 K in the misfit compound (PbSe)1.16(TiSe2)2
The structural misfit compound (PbSe)1.16(TiSe2)2 is reported. It is a
superconductor with a Tc of 2.3 K. (PbSe)1.16(TiSe2)2 derives from a parent
compound, TiSe2, which shows a charge density wave transition and no
superconductivity. The crystal structure, characterized by high resolution
electron microscopy and powder x-ray diffraction, consists of two layers of
1T-TiSe2 alternating with a double layer of (100) PbSe. Transport measurements
suggest that the superconductivity is induced by charge transfer from the PbSe
layers to the TiSe2 layers.Comment: 17 pages, 4 figures. To be published in Physical Review
- …