22 research outputs found

    Compact κ\kappa-deformation and spectral triples

    Full text link
    We construct discrete versions of κ\kappa-Minkowski space related to a certain compactness of the time coordinate. We show that these models fit into the framework of noncommutative geometry in the sense of spectral triples. The dynamical system of the underlying discrete groups (which include some Baumslag--Solitar groups) is heavily used in order to construct \emph{finitely summable} spectral triples. This allows to bypass an obstruction to finite-summability appearing when using the common regular representation. The dimension of these spectral triples is unrelated to the number of coordinates defining the κ\kappa-deformed Minkowski spaces.Comment: 30 page

    Restrictions and extensions of semibounded operators

    Full text link
    We study restriction and extension theory for semibounded Hermitian operators in the Hardy space of analytic functions on the disk D. Starting with the operator zd/dz, we show that, for every choice of a closed subset F in T=bd(D) of measure zero, there is a densely defined Hermitian restriction of zd/dz corresponding to boundary functions vanishing on F. For every such restriction operator, we classify all its selfadjoint extension, and for each we present a complete spectral picture. We prove that different sets F with the same cardinality can lead to quite different boundary-value problems, inequivalent selfadjoint extension operators, and quite different spectral configurations. As a tool in our analysis, we prove that the von Neumann deficiency spaces, for a fixed set F, have a natural presentation as reproducing kernel Hilbert spaces, with a Hurwitz zeta-function, restricted to FxF, as reproducing kernel.Comment: 63 pages, 11 figure
    corecore