14 research outputs found

    A new fasciocutaneous flap model identifies a critical role for endothelial Notch signaling in wound healing and flap survival.

    Get PDF
    Flap surgery is a common treatment for severe wounds and a major determinant of surgical outcome. Flap survival and healing depends on adaptation of the local flap vasculature. Using a novel and defined model of fasciocutaneous flap surgery, we demonstrate that the Notch ligand Delta-like 1 (Dll1), expressed in vascular endothelial cells, regulates flap arteriogenesis, inflammation and flap survival. Utilizing the stereotyped anatomy of dorsal skin arteries, ligation of the major vascular pedicle induced strong collateral vessel development by end-to-end anastomosis in wildtype mice, which supported flap perfusion recovery over time. In mice with heterozygous deletion of Dll1, collateral vessel formation was strongly impaired, resulting in aberrant vascularization and subsequent necrosis of the tissue. Furthermore, Dll1 deficient mice showed severe inflammation in the flap dominated by monocytes and macrophages. This process is controlled by endothelial Dll1 in vivo, since the results were recapitulated in mice with endothelial-specific deletion of Dll1. Thus, our model provides a platform to study vascular adaptation to flap surgery and molecular and cellular regulators influencing flap healing and survival

    CSF-1 and Notch signaling cooperate in macrophage instruction and tissue repair during peripheral limb ischemia

    Get PDF
    Ischemia causes an inflammatory response featuring monocyte-derived macrophages (MF) involved in angiogenesis and tissue repair. Angiogenesis and ischemic macrophage differentiation are regulated by Notch signaling via Notch ligand Delta-like 1 (Dll1). Colony stimulating factor 1 (CSF-1) is an essential MF lineage factor, but its role in ischemic macrophage development and the interaction with Notch signaling is so far unclear. Using a mouse model of hind limb ischemia with CSF-1 inhibitor studies and Dll1 heterozygous mice we show that CSF-1 is induced in the ischemic niche by a subpopulation of stromal cells expressing podoplanin, which was paralleled by the development of ischemic macrophages. Inhibition of CSF-1 signaling with small molecules or blocking antibodies impaired macrophage differentiation but prolonged the inflammatory response, resulting in impaired perfusion recovery and tissue regeneration. Yet, despite high levels of CSF-1, macrophage maturation and perfusion recovery were impaired in mice with Dll1 haploinsufficiency, while inflammation was exaggerated. In vitro, CSF-1 was not sufficient to induce full MF differentiation from donor monocytes in the absence of recombinant DLL1, while the presence of DLL1 in a dose-dependent manner stimulated MF differentiation in combination with CSF-1. Thus, CSF-1 is an ischemic niche factor that cooperates with Notch signaling in a non-redundant fashion to instruct macrophage cell fate and maturation, which is required for ischemic perfusion recovery and tissue repair

    Genetic testing for TMEM154 mutations associated with lentivirus susceptibility in sheep

    Get PDF
    Stefan Hiendleder is a member of the International Sheep Genomics ConsortiumIn sheep, small ruminant lentiviruses cause an incurable, progressive, lymphoproliferative disease that affects millions of animals worldwide. Known as ovine progressive pneumonia virus (OPPV) in the U.S., and Visna/Maedi virus (VMV) elsewhere, these viruses reduce an animal’s health, productivity, and lifespan. Genetic variation in the ovine transmembrane protein 154 gene (TMEM154) has been previously associated with OPPV infection in U.S. sheep. Sheep with the ancestral TMEM154 haplotype encoding glutamate (E) at position 35, and either form of an N70I variant, were highly-susceptible compared to sheep homozygous for the K35 missense mutation. Our current overall aim was to characterize TMEM154 in sheep from around the world to develop an efficient genetic test for reduced susceptibility. The average frequency of TMEM154 E35 among 74 breeds was 0.51 and indicated that highly-susceptible alleles were present in most breeds around the world. Analysis of whole genome sequences from an international panel of 75 sheep revealed more than 1,300 previously unreported polymorphisms in a 62 kb region containing TMEM154 and confirmed that the most susceptible haplotypes were distributed worldwide. Novel missense mutations were discovered in the signal peptide (A13V) and the extracellular domains (E31Q, I74F, and I102T) of TMEM154. A matrix-assisted laser desorption/ionization–time-of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect these and six previously reported missense and two deletion mutations in TMEM154. In blinded trials, the call rate for the eight most common coding polymorphisms was 99.4% for 499 sheep tested and 96.0% of the animals were assigned paired TMEM154 haplotypes (i.e., diplotypes). The widespread distribution of highly-susceptible TMEM154 alleles suggests that genetic testing and selection may improve the health and productivity of infected flocks.Michael P. Heaton, Theodore S. Kalbfleisch, Dustin T. Petrik, Barry Simpson, James W. Kijas, Michael L. Clawson, Carol G. Chitko-McKown, Gregory P. Harhay, Kreg A. Leymaster, the International Sheep Genomics Consortiu

    SNPs for Parentage Testing and Traceability in Globally Diverse Breeds of Sheep

    Get PDF
    DNA-based parentage determination accelerates genetic improvement in sheep by increasing pedigree accuracy. Single nucleotide polymorphism (SNP) markers can be used for determining parentage and to provide unique molecular identifiers for tracing sheep products to their source. However, the utility of a particular ‘‘parentage SNP’’ varies by breed depending on its minor allele frequency (MAF) and its sequence context. Our aims were to identify parentage SNPs with exceptional qualities for use in globally diverse breeds and to develop a subset for use in North American sheep. Starting with genotypes from 2,915 sheep and 74 breed groups provided by the International Sheep Genomics Consortium (ISGC), we analyzed 47,693 autosomal SNPs by multiple criteria and selected 163 with desirable properties for parentage testing. On average, each of the 163 SNPs was highly informative (MAF ≥ 0.3) in 48±5 breed groups. Nearby polymorphisms that could otherwise confound genetic testing were identified by whole genome and Sanger sequencing of 166 sheep from 54 breed groups. A genetic test with 109 of the 163 parentage SNPs was developed for matrix-assisted laser desorption/ionization– time-of-flight mass spectrometry. The scoring rates and accuracies for these 109 SNPs were greater than 99% in a panel of North American sheep. In a blinded set of 96 families (sire, dam, and non-identical twin lambs), each parent of every lamb was identified without using the other parent’s genotype. In 74 ISGC breed groups, the median estimates for probability of a coincidental match between two animals (PI), and the fraction of potential adults excluded from parentage (PE) were 1.1×10(−39) and 0.999987, respectively, for the 109 SNPs combined. The availability of a well-characterized set of 163 parentage SNPs facilitates the development of high-throughput genetic technologies for implementing accurate and economical parentage testing and traceability in many of the world’s sheep breeds

    Genetic Testing for \u3ci\u3eTMEM154\u3c/i\u3e Mutations Associated with Lentivirus Susceptibility in Sheep

    Get PDF
    In sheep, small ruminant lentiviruses cause an incurable, progressive, lymphoproliferative disease that affects millions of animals worldwide. Known as ovine progressive pneumonia virus (OPPV) in the U.S., and Visna/Maedi virus (VMV) elsewhere, these viruses reduce an animal’s health, productivity, and lifespan. Genetic variation in the ovine transmembrane protein 154 gene (TMEM154) has been previously associated with OPPV infection in U.S. sheep. Sheep with the ancestral TMEM154 haplotype encoding glutamate (E) at position 35, and either form of an N70I variant, were highly-susceptible compared to sheep homozygous for the K35 missense mutation. Our current overall aim was to characterize TMEM154 in sheep from around the world to develop an efficient genetic test for reduced susceptibility. The average frequency of TMEM154 E35 among 74 breeds was 0.51 and indicated that highly-susceptible alleles were present in most breeds around the world. Analysis of whole genome sequences from an international panel of 75 sheep revealed more than 1,300 previously unreported polymorphisms in a 62 kb region containing TMEM154 and confirmed that the most susceptible haplotypes were distributed worldwide. Novel missense mutations were discovered in the signal peptide (A13V) and the extracellular domains (E31Q, I74F, and I102T) of TMEM154. A matrix-assisted laser desorption/ionization–time-of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect these and six previously reported missense and two deletion mutations in TMEM154. In blinded trials, the call rate for the eight most common coding polymorphisms was 99.4% for 499 sheep tested and 96.0% of the animals were assigned paired TMEM154 haplotypes (i.e., diplotypes). The widespread distribution of highly-susceptible TMEM154 alleles suggests that genetic testing and selection may improve the health and productivity of infected flocks

    <i>TMEM154</i> SNP maps and median-joining networks.

    No full text
    <p>Panel A, genomic map of <i>TMEM154</i>: orange arrows, 5′ and 3′untranslated regions of exons; blue arrows, exon coding regions; grey rectangles, introns or intergenic regions. Blue and red tick dots denote position and frequency of SNPs in an international panel of 75 sheep and a panel of 96 U.S. sheep <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055490#pone.0055490-Heaton1" target="_blank">[9]</a>, respectively. Panel B, high resolution map of <i>TMEM154</i> regions targeted for PCR-amplification. PCR amplification primers are indicated with black arrowheads and listed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055490#pone.0055490.s003" target="_blank">Table S3</a>. Red lowercase letters above SNP positions are IUPAC/IUBMB ambiguity codes for nucleotides (r = a/g, y = c/t, m = a/c, k = g/t, s = c/g, w = a/t) <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055490#pone.0055490-1" target="_blank">[17]</a> and indicate 12 sites affected by nonsynonymous substitutions. The red uppercase letters above SNP positions indicate the amino acid polymorphisms encoded at <i>TMEM154</i> codons 4, 13, 14, 25, 31, 33, 35, 44, 70, 75, 82 and 102. Black lowercase letters below SNPs indicate nucleotide polymorphisms that resulted in synonymous substitutions. Panel C, the areas of circles for haplotypes 1 to 4 are proportional to the frequencies in the international panel of 75 ISGC sheep. The symbols are as follows: black circles, risk factors; white circle, non-risk factor; grey circles, risk factor status unknown; red circles, haplotypes known in U.S. sheep but not observed in the international panel of 75 ISGC sheep (risk factor status unknown); shaded square, <i>TMEM154</i> haplotype predicted to have occurred but unobserved to date. Dashed grey line, haplotypes observed in wild sheep species but not domestic sheep. Haplotypes 13 and 14 were observed in one animal each and their location of origin is indicated.</p

    Call rates and concordance of <i>TMEM154</i> genetic testing.

    No full text
    a<p>Genoptypic data were collected in a single pass for R4A(delta53), H14L, T25I, D33N, E35K, T44M, N70I, and E82Y(delta82).</p>b<p>This animal group was composed of 160 OPP case-control pairs as previously described <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055490#pone.0055490-Heaton1" target="_blank">[9]</a>.</p>c<p>Breed composition: 1/2 Romanov, 1/4 Rambouillet, 1/8 White Dorper, and 1/8 Katahdin.</p>d<p>Not applicable.</p

    SNPs for parentage testing and traceability in globally diverse breeds of sheep

    No full text
    DNA-based parentage determination accelerates genetic improvement in sheep by increasing pedigree accuracy. Single nucleotide polymorphism (SNP) markers can be used for determining parentage and to provide unique molecular identifiers for tracing sheep products to their source. However, the utility of a particular "parentage SNP" varies by breed depending on its minor allele frequency (MAF) and its sequence context. Our aims were to identify parentage SNPs with exceptional qualities for use in globally diverse breeds and to develop a subset for use in North American sheep. Starting with genotypes from 2,915 sheep and 74 breed groups provided by the International Sheep Genomics Consortium (ISGC), we analyzed 47,693 autosomal SNPs by multiple criteria and selected 163 with desirable properties for parentage testing. On average, each of the 163 SNPs was highly informative (MAF &gt; 0.3) in 4865 breed groups. Nearby polymorphisms that could otherwise confound genetic testing were identified by whole genome and Sanger sequencing of 166 sheep from 54 breed groups. A genetic test with 109 of the 163 parentage SNPs was developed for matrix-assisted laser desorption/ionization- Time-of-flight mass spectrometry. The scoring rates and accuracies for these 109 SNPs were greater than 99% in a panel of North American sheep. In a blinded set of 96 families (sire, dam, and non-identical twin lambs), each parent of every lamb was identified without using the other parent's genotype. In 74 ISGC breed groups, the median estimates for probability of a coincidental match between two animals (PI), and the fraction of potential adults excluded from parentage (PE) were 1.1 10(239) and 0.999987, respectively, for the 109 SNPs combined. The availability of a well-characterized set of 163 parentage SNPs facilitates the development of high-throughput genetic technologies for implementing accurate and economical parentage testing and traceability in many of the world's sheep breeds

    Parentage exclusion in 95 tetrad families with 109 parentage SNPs.

    No full text
    <p><b>Panel A:</b> Structure of the USMARC Sheep Diversity Family Panel version 2.46. <b>Panel B:</b> Distribution of the opposing homozygous SNPs genotypes in a pair-wise comparison of all possible combinations of parents and offspring (36,864 comparisons between an adults and an offspring). <b>Panel C:</b> Distribution of opposing homozygotes between the true parents and offspring (380 comparisons between lambs and sires/dams). <b>Panel D:</b> Distribution of the opposing homozygotes in a pair-wise SNP comparison of the 190 lambs and 95 each of the closest matching ram and ewe that were not parents of the lambs (380 comparisons between lambs and rams/ewes).</p
    corecore