23 research outputs found

    Demonstration of radon removal from SF6 using molecular sieves

    Get PDF
    The gas SF6 has become of interest as a negative ion drift gas for use in directional dark matter searches. However, as for other targets in such searches, it is important that radon contamination can be removed as this provides a source of unwanted background events. In this work we demonstrate for the first time filtration of radon from SF6 gas by using a molecular sieve. Four types of sieves from Sigma-Aldrich were investigated, namely 3Å, 4Å, 5Å and 13X. A manufactured radon source was used for the tests. This was attached to a closed loop system in which gas was flowed through the filters and a specially adapted Durridge RAD7 radon detector. In these measurements, it was found that only the 5Å type was able to significantly reduce the radon concentration without absorbing the SF6 gas. The sieve was able to reduce the initial radon concentration of 3875 ± 13 Bqm−3 in SF6 gas by 87% when cooled with dry ice. The ability of the cooled 5Å molecular sieve filter to significantly reduce radon concentration from SF6 provides a promising foundation for the construction of a radon filtration setup for future ultra-sensitive SF6 gas rare-event physics experiments

    A Framework for Untangling Transient Groundwater Mixing and Travel Times

    No full text
    Understanding the mixing between surface water and groundwater as well as groundwater travel times in vulnerable aquifers is crucial to sustaining a safe water supply. Age dating tracers used to infer apparent travel times typically refer to the entire groundwater sample. A groundwater sample, however, consists of a mixture of waters with a distribution of travel times. Age dating tracers only reflect the proportion of the water that is under the dating range of the used tracer, thus their interpretation is typically biased. Additionally, end‐member mixing models are subject to various sources of uncertainties, which are typically neglected. In this study, we introduce a new framework that untangles groundwater mixing ratios and travel times using a novel combination of in‐situ noble gas analyses. We applied this approach during a groundwater pumping test carried out in a pre‐alpine Swiss valley. First, we calculated transient mixing ratios between recently infiltrated river water and regional groundwater present in a wellfield, using helium‐4 concentrations combined with a Bayesian end‐member mixing model. Having identified the groundwater fraction of recently infiltrated river water (Frw) consequently allowed us to infer the travel times from the river to the wellfield, estimated based on radon‐222 activities of Frw. Furthermore, we compared tracer‐based estimates of Frw with results from a calibrated numerical model. We demonstrate (i) that partitioning of major water sources enables a meaningful interpretation of an age dating tracer of the water fraction of interest and (ii) that the streambed has a major control on the estimated travel times.ISSN:0043-1397ISSN:1944-797
    corecore